
Package ‘text’
October 14, 2022

Type Package

Title Analyses of Text using Transformers Models from HuggingFace,
Natural Language Processing and Machine Learning

Version 0.9.99.2

Description Link R with Transformers from Hugging Face to transform text variables to word embed-
dings; where the word embeddings are used to statistically test the mean difference be-
tween set of texts, compute semantic similarity scores between texts, predict numerical vari-
ables, and visual statistically significant words according to various dimensions etc. For more in-
formation see <https://www.r-text.org>.

License GPL-3

URL https://r-text.org/, https://github.com/OscarKjell/text/

BugReports https://github.com/OscarKjell/text/issues/

Encoding UTF-8

Archs x64

SystemRequirements Python (>= 3.6.0)

LazyData true

BuildVignettes true

Imports dplyr, tibble, stringi, tidyr, ggplot2, ggrepel, cowplot,
rlang, purrr, magrittr, parsnip, recipes, rsample, reticulate,
tune, workflows, yardstick, future, furrr, overlapping

RoxygenNote 7.2.0

Suggests knitr, rmarkdown, testthat, rio, glmnet, randomForest, covr,
xml2, ranger

VignetteBuilder knitr

Depends R (>= 4.00)

NeedsCompilation no

Author Oscar Kjell [aut, cre] (<https://orcid.org/0000-0002-2728-6278>),
Salvatore Giorgi [aut] (<https://orcid.org/0000-0001-7381-6295>),
Andrew Schwartz [aut] (<https://orcid.org/0000-0002-6383-3339>)

Maintainer Oscar Kjell <oscar.kjell@psy.lu.se>

1

https://www.r-text.org
https://r-text.org/
https://github.com/OscarKjell/text/
https://github.com/OscarKjell/text/issues/
https://orcid.org/0000-0002-2728-6278
https://orcid.org/0000-0001-7381-6295
https://orcid.org/0000-0002-6383-3339

2 R topics documented:

Repository CRAN

Date/Publication 2022-09-20 22:00:02 UTC

R topics documented:
centrality_data_harmony . 3
DP_projections_HILS_SWLS_100 . 4
Language_based_assessment_data_3_100 . 5
Language_based_assessment_data_8 . 5
PC_projections_satisfactionwords_40 . 6
raw_embeddings_1 . 7
textCentrality . 7
textCentralityPlot . 8
textClassify . 11
textDescriptives . 13
textDimName . 14
textDistance . 15
textDistanceMatrix . 16
textDistanceNorm . 17
textEmbed . 18
textEmbedLayerAggregation . 20
textEmbedRawLayers . 22
textEmbedStatic . 23
textGeneration . 24
textModelLayers . 26
textModels . 27
textModelsRemove . 27
textNER . 28
textPCA . 29
textPCAPlot . 30
textPlot . 33
textPredict . 37
textPredictAll . 38
textPredictTest . 39
textProjection . 40
textProjectionPlot . 42
textQA . 47
textrpp_initialize . 49
textrpp_install . 50
textrpp_uninstall . 51
textSimilarity . 52
textSimilarityMatrix . 53
textSimilarityNorm . 54
textSimilarityTest . 55
textSum . 56
textTokenize . 58
textTrain . 59

centrality_data_harmony 3

textTrainLists . 60
textTrainRandomForest . 61
textTrainRegression . 64
textTranslate . 67
textWordPrediction . 68
textZeroShot . 69
word_embeddings_4 . 71

Index 72

centrality_data_harmony

Example data for plotting a Semantic Centrality Plot.

Description

The dataset is a shortened version of the data sets of Study 1 from Kjell, et al., 2016.

Usage

centrality_data_harmony

Format

A data frame with 2,146 and 4 variables:

words unique words

n overall word frequency

central_semantic_similarity cosine semantic similarity to the aggregated word embedding

n_percent frequency in percent

Source

https://link.springer.com/article/10.1007/s11205-015-0903-z

https://link.springer.com/article/10.1007/s11205-015-0903-z

4 DP_projections_HILS_SWLS_100

DP_projections_HILS_SWLS_100

Data for plotting a Dot Product Projection Plot.

Description

Tibble is the output from textProjection. The dataset is a shortened version of the data sets of Study
3-5 from Kjell, Kjell, Garcia and Sikström 2018.

Usage

DP_projections_HILS_SWLS_100

Format

A data frame with 583 rows and 12 variables:

words unique words

dot.x dot product projection on the x-axes

p_values_dot.x p-value for the word in relation to the x-axes

n_g1.x frequency of the word in group 1 on the x-axes variable

n_g2.x frequency of the word in group 2 on the x-axes variable

dot.y dot product projection on the y-axes

p_values_dot.y p-value for the word in relation to the y-axes

n_g1.y frequency of the word in group 1 on the y-axes variable

n_g2.y frequency of the word in group 2 on the x-axes variable

n overall word frequency

n.percent frequency in percent

N_participant_responses number of participants (as this is needed in the analyses)

Source

https://psyarxiv.com/er6t7/

https://psyarxiv.com/er6t7/

Language_based_assessment_data_3_100 5

Language_based_assessment_data_3_100

Example text and numeric data.

Description

The dataset is a shortened version of the data sets of Study 3-5 from Kjell, Kjell, Garcia and Sik-
ström 2018.

Usage

Language_based_assessment_data_3_100

Format

A data frame with 100 rows and 4 variables:

harmonywords Word responses from the harmony in life word question

hilstotal total score of the Harmony In Life Scale

swlstotal total score of the Satisfaction With Life Scale

Source

https://psyarxiv.com/er6t7/

Language_based_assessment_data_8

Text and numeric data for 10 participants.

Description

The dataset is a shortened version of the data sets of Study 3-5 from Kjell et al., (2018; https://psyarxiv.com/er6t7/).

Usage

Language_based_assessment_data_8

Format

A data frame with 40 participants and 8 variables:

harmonywords descriptive words where respondents describe their harmony in life

satisfactionwords descriptive words where respondents describe their satisfaction with life

harmonytexts text where respondents describe their harmony in life

satisfactiontexts text where respondents describe their satisfaction with life

https://psyarxiv.com/er6t7/

6 PC_projections_satisfactionwords_40

hilstotal total score of the Harmony In Life Scale

swlstotal total score of the Satisfaction With Life Scale

age respondents age in years

gender respondents gender 1=male, 2=female

Source

https://psyarxiv.com/er6t7/

PC_projections_satisfactionwords_40

Example data for plotting a Principle Component Projection Plot.

Description

The dataset is a shortened version of the data sets of Study 1 from Kjell, et al., 2016.

Usage

PC_projections_satisfactionwords_40

Format

A data frame.

words unique words

n overall word frequency

Dim_PC1 Principle component value for dimension 1

Dim_PC2 Principle component value for dimension 2

Source

https://link.springer.com/article/10.1007/s11205-015-0903-z

https://psyarxiv.com/er6t7/
https://link.springer.com/article/10.1007/s11205-015-0903-z

raw_embeddings_1 7

raw_embeddings_1 Word embeddings from textEmbedRawLayers function

Description

The dataset is a shortened version of the data sets of Study 3-5 from Kjell, Kjell, Garcia and Sik-
ström 2018.

Usage

raw_embeddings_1

Format

A list with token-level word embeddings for harmony words.

tokens words

layer_number layer of the transformer model

Dim1:Dim8 Word embeddings dimensions

Source

https://psyarxiv.com/er6t7/

textCentrality Compute semantic similarity score between single words’ word em-
beddings and the aggregated word embedding of all words.

Description

Compute semantic similarity score between single words’ word embeddings and the aggregated
word embedding of all words.

Usage

textCentrality(
words,
word_embeddings,
word_types_embeddings = word_types_embeddings_df,
method = "cosine",
aggregation = "mean",
min_freq_words_test = 0

)

https://psyarxiv.com/er6t7/

8 textCentralityPlot

Arguments

words Word or text variable to be plotted.
word_embeddings

Word embeddings from textEmbed for the words to be plotted (i.e., the aggre-
gated word embeddings for the "words" variable).

word_types_embeddings

Word embeddings from textEmbed for individual words (i.e., the decontextual-
ized word embeddings).

method Character string describing type of measure to be computed. Default is "cosine"
(see also "spearmen", "pearson" as well as measures from textDistance() (which
here is computed as 1 - textDistance) including "euclidean", "maximum", "man-
hattan", "canberra", "binary" and "minkowski").

aggregation Method to aggregate the word embeddings (default = "mean"; see also "min",
"max" or "[CLS]").

min_freq_words_test

Option to select words that have at least occurred a specified number of times
(default = 0); when creating the semantic similarity scores.

Value

A dataframe with variables (e.g., including semantic similarity, frequencies) for the individual
words that are used for the plotting in the textCentralityPlot function.

See Also

see textCentralityPlot textProjection

Examples

Not run:
df_for_plotting <- textCentrality(

words = Language_based_assessment_data_8$harmonywords,
word_embeddings = word_embeddings_4$texts$harmonywords,
word_types_embeddings = word_embeddings_4$word_types

)
df_for_plotting

End(Not run)

textCentralityPlot Plot words according to semantic similarity to the aggregated word
embedding.

Description

Plot words according to semantic similarity to the aggregated word embedding.

textCentralityPlot 9

Usage

textCentralityPlot(
word_data,
min_freq_words_test = 1,
plot_n_word_extreme = 10,
plot_n_word_frequency = 10,
plot_n_words_middle = 10,
titles_color = "#61605e",
x_axes = "central_semantic_similarity",
title_top = "Semantic Centrality Plot",
x_axes_label = "Semantic Centrality",
scale_x_axes_lim = NULL,
scale_y_axes_lim = NULL,
word_font = NULL,
centrality_color_codes = c("#EAEAEA", "#85DB8E", "#398CF9", "#9e9d9d"),
word_size_range = c(3, 8),
position_jitter_hight = 0,
position_jitter_width = 0.03,
point_size = 0.5,
arrow_transparency = 0.1,
points_without_words_size = 0.5,
points_without_words_alpha = 0.5,
legend_title = "SC",
legend_x_axes_label = "x",
legend_x_position = 0.02,
legend_y_position = 0.02,
legend_h_size = 0.2,
legend_w_size = 0.2,
legend_title_size = 7,
legend_number_size = 2,
seed = 1007

)

Arguments

word_data Tibble from textPlotData.
min_freq_words_test

Select words to significance test that have occurred at least min_freq_words_test
(default = 1).

plot_n_word_extreme

Number of words per dimension to plot with extreme Supervised Dimension
Projection value. (i.e., even if not significant; duplicates are removed).

plot_n_word_frequency

Number of words to plot according to their frequency. (i.e., even if not signifi-
cant).

plot_n_words_middle

Number of words to plot that are in the middle in Supervised Dimension Projec-
tion score (i.e., even if not significant; duplicates are removed).

10 textCentralityPlot

titles_color Color for all the titles (default: "#61605e").
x_axes Variable to be plotted on the x-axes (default is "central_semantic_similarity",

could also select "n", "n_percent").
title_top Title (default " ").
x_axes_label Label on the x-axes.
scale_x_axes_lim

Length of the x-axes (default: NULL, which uses c(min(word_data$central_semantic_similarity)-
0.05, max(word_data$central_semantic_similarity)+0.05); change this by e.g.,
try c(-5, 5)).

scale_y_axes_lim

Length of the y-axes (default: NULL, which uses c(-1, 1); change e.g., by trying
c(-5, 5)).

word_font Type of font (default: NULL).
centrality_color_codes

Colors of the words selected as plot_n_word_extreme (minimum values), plot_n_words_middle,
plot_n_word_extreme (maximum values) and plot_n_word_frequency; the de-
fault is c("#EAEAEA", "#85DB8E", "#398CF9", "#9e9d9d", respectively.

word_size_range

Vector with minimum and maximum font size (default: c(3, 8)).
position_jitter_hight

Jitter height (default: .0).
position_jitter_width

Jitter width (default: .03).
point_size Size of the points indicating the words’ position (default: 0.5).
arrow_transparency

Transparency of the lines between each word and point (default: 0.1).
points_without_words_size

Size of the points not linked to a word (default is to not show the point; , i.e., 0).
points_without_words_alpha

Transparency of the points that are not linked to a word (default is to not show
it; i.e., 0).

legend_title Title of the color legend (default: "(SCP)").
legend_x_axes_label

Label on the color legend (default: "(x)".
legend_x_position

Position on the x coordinates of the color legend (default: 0.02).
legend_y_position

Position on the y coordinates of the color legend (default: 0.05).
legend_h_size Height of the color legend (default 0.15).
legend_w_size Width of the color legend (default 0.15).
legend_title_size

Font size of the title (default = 7).
legend_number_size

Font size of the values in the legend (default = 2).
seed Set different seed.

textClassify 11

Value

A 1-dimensional word plot based on similarity to the aggregated word embedding, as well as tibble
with processed data used to plot.

See Also

see textCentrality and textProjection

Examples

The test-data included in the package is called: centrality_data_harmony
names(centrality_data_harmony)
Plot
centrality_plot <- textCentralityPlot(
word_data = centrality_data_harmony,
min_freq_words_test = 10,
plot_n_word_extreme = 10,
plot_n_word_frequency = 10,
plot_n_words_middle = 10,
titles_color = "#61605e",
x_axes = "central_semantic_similarity",
#
title_top = "Semantic Centrality Plot",
x_axes_label = "Semantic Centrality",
#
word_font = NULL,
centrality_color_codes = c("#EAEAEA", "#85DB8E", "#398CF9", "#9e9d9d"),
word_size_range = c(3, 8),
point_size = 0.5,
arrow_transparency = 0.1,
points_without_words_size = 0.5,
points_without_words_alpha = 0.5,
)
centrality_plot

textClassify Predict label and probability of a text using a pretrained classifier
language model. (experimental)

Description

Predict label and probability of a text using a pretrained classifier language model. (experimental)

Usage

textClassify(
x,
model = "distilbert-base-uncased-finetuned-sst-2-english",
device = "cpu",

12 textClassify

tokenizer_parallelism = FALSE,
logging_level = "error",
return_incorrect_results = FALSE,
return_all_scores = FALSE,
function_to_apply = "none",
set_seed = 202208

)

Arguments

x (string) A character variable or a tibble/dataframe with at least one character
variable.

model (string) Specification of a pre-trained classifier language model. For full list
of options see pretrained classifier models at HuggingFace. For example use
"cardiffnlp/twitter-roberta-base-sentiment", "distilbert-base-uncased-finetuned-
sst-2-english".

device (string) Device to use: ’cpu’, ’gpu’, or ’gpu:k’ where k is a specific device
number.

tokenizer_parallelism

(boolean) If TRUE this will turn on tokenizer parallelism.

logging_level (string) Set the logging level. Options (ordered from less logging to more log-
ging): critical, error, warning, info, debug

return_incorrect_results

(boolean) Stop returning some incorrectly formatted/structured results. This set-
ting does CANOT evaluate the actual results (whether or not they make sense,
exist, etc.). All it does is to ensure the returned results are formatted correctly
(e.g., does the question-answering dictionary contain the key "answer", is senti-
ments from textClassify containing the labels "positive" and "negative").

return_all_scores

(boolean) Whether to return all prediction scores or just the one of the predicted
class.

function_to_apply

(string) The function to apply to the model outputs to retrieve the scores.

set_seed (Integer) Set seed. There are four different values: "default": if the model has
a single label, will apply the sigmoid function on the output. If the model has
several labels, the softmax function will be applied on the output. "sigmoid":
Applies the sigmoid function on the output. "softmax": Applies the softmax
function on the output. "none": Does not apply any function on the output.

Value

A tibble with predicted labels and scores for each text variable. The comment of the object show
the model-name and computation time.

See Also

see textGeneration, textNER, textSum, textQA, textTranslate

https://huggingface.co/transformers/pretrained_models.html

textDescriptives 13

Examples

classifications <- textClassify(x = Language_based_assessment_data_8[1:2, 1:2])
classifications
comment(classifications)

textDescriptives Compute descriptive statistics of character variables.

Description

Compute descriptive statistics of character variables.

Usage

textDescriptives(
words,
compute_total = TRUE,
entropy_unit = "log2",
na.rm = TRUE

)

Arguments

words One or several character variables; if its a tibble or dataframe, all the character
variables will be selected.

compute_total Boolean. If the input (words) is a tibble/dataframe with several character vari-
ables, a total variable is computed.

entropy_unit The unit entropy is measured in. The default is to used bits (i.e., log2; see
also, "log", "log10"). If a total score for several varaibles is computed,the text
columns are combined using the dplyr unite function. For more information
about the entropy see the entropy package and specifically its entropy.plugin
function.

na.rm Option to remove NAs when computing mean, median etc (see under return).

Value

A tibble with descriptive statistics, including variable = the variable names of input "words"; w_total
= total number of words in the variable; w_mean = mean number of words in each row of the
variable; w_median = median number of words in each row of the variable; w_range_min = smallest
number of words of all rows; w_range_max = largest number of words of all rows; w_sd = the
standard deviation of the number of words of all rows; unique_tokens = the unique number of
tokens (using the word_tokenize function from python package nltk) n_token = number of tokens
in the variable (using the word_tokenize function from python package nltk) entropy = the entropy
of the variable. It is computed as the Shannon entropy H of a discrete random variable from the
specified bin frequencies. (see library entropy and specifically the entropy.plugin function)

14 textDimName

See Also

see textEmbed

Examples

Not run:
textDescriptives(Language_based_assessment_data_8[1:2])

End(Not run)

textDimName Change the names of the dimensions in the word embeddings.

Description

Change the names of the dimensions in the word embeddings.

Usage

textDimName(word_embeddings, dim_names = TRUE)

Arguments

word_embeddings

List of word embeddings

dim_names (boolean) If TRUE the word embedding name will be attached to the name of
each dimension; is FALSE, the attached part of the name will be removed.

Value

Word embeddings with changed names.

See Also

see textEmbed

Examples

Note that dimensions are called Dim1_harmonytexts etc.
word_embeddings_4$texts$harmonytexts
Here they are changed to just Dim
w_e_T <- textDimName(word_embeddings_4$texts["harmonytexts"],

dim_names = FALSE
)
Here they are changed back
w_e_F <- textDimName(w_e_T, dim_names = TRUE)

textDistance 15

textDistance Compute the semantic distance between two text variables.

Description

Compute the semantic distance between two text variables.

Usage

textDistance(x, y, method = "euclidean", center = FALSE, scale = FALSE)

Arguments

x Word embeddings (from textEmbed).

y Word embeddings (from textEmbed).

method Character string describing type of measure to be computed; default is "eu-
clidean" (see also measures from stats:dist() including "maximum", "manhat-
tan", "canberra", "binary" and "minkowski". It is also possible to use "cosine",
which computes the cosine distance (i.e., 1 - cosine(x, y)).

center (boolean; from base::scale) If center is TRUE then centering is done by subtract-
ing the column means (omitting NAs) of x from their corresponding columns,
and if center is FALSE, no centering is done.

scale (boolean; from base::scale) If scale is TRUE then scaling is done by dividing
the (centered) columns of x by their standard deviations if center is TRUE, and
the root mean square otherwise.

Value

A vector comprising semantic distance scores.

See Also

see textSimilarity, textSimilarityNorm and textSimilarityTest

Examples

library(dplyr)
distance_scores <- textDistance(

x = word_embeddings_4$texts$harmonytext,
y = word_embeddings_4$texts$satisfactiontext

)
comment(distance_scores)

16 textDistanceMatrix

textDistanceMatrix Compute semantic distance scores between all combinations in a word
embedding

Description

Compute semantic distance scores between all combinations in a word embedding

Usage

textDistanceMatrix(x, method = "euclidean", center = FALSE, scale = FALSE)

Arguments

x Word embeddings (from textEmbed).

method Character string describing type of measure to be computed; default is "eu-
clidean" (see also measures from stats:dist() including "maximum", "manhat-
tan", "canberra", "binary" and "minkowski". It is also possible to use "cosine",
which computes the cosine distance (i.e., 1 - cosine(x, y)).

center (boolean; from base::scale) If center is TRUE then centering is done by subtract-
ing the column means (omitting NAs) of x from their corresponding columns,
and if center is FALSE, no centering is done.

scale (boolean; from base::scale) If scale is TRUE then scaling is done by dividing
the (centered) columns of x by their standard deviations if center is TRUE, and
the root mean square otherwise.

Value

A matrix of semantic distance scores

See Also

see textDistanceNorm and textSimilarityTest

Examples

distance_scores <- textDistanceMatrix(word_embeddings_4$texts$harmonytext[1:3,])
round(distance_scores, 3)

textDistanceNorm 17

textDistanceNorm Compute the semantic distance between a text variable and a word
norm (i.e., a text represented by one word embedding that represent a
construct/concept).

Description

Compute the semantic distance between a text variable and a word norm (i.e., a text represented by
one word embedding that represent a construct/concept).

Usage

textDistanceNorm(x, y, method = "euclidean", center = FALSE, scale = FALSE)

Arguments

x Word embeddings (from textEmbed).

y Word embedding from textEmbed (from only one text).

method Character string describing type of measure to be computed; default is "eu-
clidean" (see also measures from stats:dist() including "maximum", "manhat-
tan", "canberra", "binary" and "minkowski". It is also possible to use "cosine",
which computes the cosine distance (i.e., 1 - cosine(x, y)).

center (boolean; from base::scale) If center is TRUE then centering is done by subtract-
ing the column means (omitting NAs) of x from their corresponding columns,
and if center is FALSE, no centering is done.

scale (boolean; from base::scale) If scale is TRUE then scaling is done by dividing
the (centered) columns of x by their standard deviations if center is TRUE, and
the root mean square otherwise.

Value

A vector comprising semantic distance scores.

See Also

see textDistance and textSimilarityTest

Examples

Not run:
library(dplyr)
library(tibble)
harmonynorm <- c("harmony peace ")
satisfactionnorm <- c("satisfaction achievement")

norms <- tibble::tibble(harmonynorm, satisfactionnorm)
word_embeddings <- word_embeddings_4$texts

18 textEmbed

word_embeddings_wordnorm <- textEmbed(norms)
similarity_scores <- textDistanceNorm(

word_embeddings$harmonytext,
word_embeddings_wordnorm$harmonynorm

)

End(Not run)

textEmbed Extract layers and aggregate them to word embeddings, for all char-
acter variables in a given dataframe.

Description

Extract layers and aggregate them to word embeddings, for all character variables in a given dataframe.

Usage

textEmbed(
texts,
model = "bert-base-uncased",
layers = -2,
dim_name = TRUE,
aggregation_from_layers_to_tokens = "concatenate",
aggregation_from_tokens_to_texts = "mean",
aggregation_from_tokens_to_word_types = NULL,
keep_token_embeddings = TRUE,
tokens_select = NULL,
tokens_deselect = NULL,
decontextualize = FALSE,
model_max_length = NULL,
max_token_to_sentence = 4,
tokenizer_parallelism = FALSE,
device = "gpu",
logging_level = "error"

)

Arguments

texts A character variable or a tibble/dataframe with at least one character variable.

model Character string specifying pre-trained language model (default ’bert-base-uncased’).
For full list of options see pretrained models at HuggingFace. For example use
"bert-base-multilingual-cased", "openai-gpt", "gpt2", "ctrl", "transfo-xl-wt103",
"xlnet-base-cased", "xlm-mlm-enfr-1024", "distilbert-base-cased", "roberta-base",
or "xlm-roberta-base".

https://huggingface.co/transformers/pretrained_models.html

textEmbed 19

layers (string or numeric) Specify the layers that should be extracted (default -2 which
give the second to last layer). It is more efficient to only extract the layers that
you need (e.g., 11). You can also extract several (e.g., 11:12), or all by setting
this parameter to "all". Layer 0 is the decontextualized input layer (i.e., not
comprising hidden states) and thus should normally not be used. These layers
can then be aggregated in the textEmbedLayerAggregation function.

dim_name Boolean, if TRUE append the variable name after all variable-names in the
output. (This differentiates between word embedding dimension names; e.g.,
Dim1_text_variable_name). see textDimName to change names back and forth.

aggregation_from_layers_to_tokens

(string) Aggregated layers of each token. Method to aggregate the contextual-
ized layers (e.g., "mean", "min" or "max, which takes the minimum, maximum
or mean, respectively, across each column; or "concatenate", which links to-
gether each word embedding layer to one long row.

aggregation_from_tokens_to_texts

(string) Aggregates to the individual text (i.e., the aggregation of all tokens/words
given to the transformer).

aggregation_from_tokens_to_word_types

(string) Aggregates to the word type (i.e., the individual words) rather than texts.

keep_token_embeddings

(boolean) Whether to also keep token embeddings when using texts or word
types aggregation.

tokens_select Option to select word embeddings linked to specific tokens such as [CLS] and
[SEP] for the context embeddings.

tokens_deselect

Option to deselect embeddings linked to specific tokens such as [CLS] and
[SEP] for the context embeddings.

decontextualize

(boolean) Provide word embeddings of single words as input to the model (these
embeddings are, e.g., used for plotting; default is to use). If using this, then set
single_context_embeddings to FALSE.

model_max_length

The maximum length (in number of tokens) for the inputs to the transformer
model (default the value stored for the associated model).

max_token_to_sentence

(numeric) Maximum number of tokens in a string to handle before switching to
embedding text sentence by sentence.

tokenizer_parallelism

(boolean) If TRUE this will turn on tokenizer parallelism. Default FALSE.

device Name of device to use: ’cpu’, ’gpu’, or ’gpu:k’ where k is a specific device
number

logging_level Set the logging level. Default: "warning". Options (ordered from less logging
to more logging): critical, error, warning, info, debug

20 textEmbedLayerAggregation

Value

A tibble with tokens, a column for layer identifier and word embeddings. Note that layer 0 is the
input embedding to the transformer

See Also

see textEmbedLayerAggregation, textEmbedRawLayers and textDimName

Examples

word_embeddings <- textEmbed(Language_based_assessment_data_8[1:2, 1:2],
layers = 10:11,
aggregation_from_layers_to_tokens = "concatenate",
aggregation_from_tokens_to_texts = "mean",
aggregation_from_tokens_to_word_types = "mean")
Show information about how the embeddings were constructed
comment(word_embeddings$texts$satisfactiontexts)
comment(word_embeddings$word_types)
comment(word_embeddings$tokens$satisfactiontexts)

textEmbedLayerAggregation

Select and aggregate layers of hidden states to form a word embed-
dings.

Description

Select and aggregate layers of hidden states to form a word embeddings.

Usage

textEmbedLayerAggregation(
word_embeddings_layers,
layers = "all",
aggregation_from_layers_to_tokens = "concatenate",
aggregation_from_tokens_to_texts = "mean",
return_tokens = FALSE,
tokens_select = NULL,
tokens_deselect = NULL

)

textEmbedLayerAggregation 21

Arguments

word_embeddings_layers

Layers outputted from textEmbedRawLayers.

layers The numbers of the layers to be aggregated (e.g., c(11:12) to aggregate the
eleventh and twelfth). Note that layer 0 is the input embedding to the trans-
former, and should normally not be used. Selecting ’all’ thus removes layer
0.

aggregation_from_layers_to_tokens

Method to carry out the aggregation among the layers for each word/token, in-
cluding "min", "max" and "mean" which takes the minimum, maximum or mean
across each column; or "concatenate", which links together each layer of the
word embedding to one long row. Default is "concatenate"

aggregation_from_tokens_to_texts

Method to carry out the aggregation among the word embeddings for the words/tokens,
including "min", "max" and "mean" which takes the minimum, maximum or
mean across each column; or "concatenate", which links together each layer of
the word embedding to one long row.

return_tokens If TRUE, provide the tokens used in the specified transformer model.

tokens_select Option to only select embeddings linked to specific tokens such as "[CLS]" and
"[SEP]" (default NULL).

tokens_deselect

Option to deselect embeddings linked to specific tokens such as "[CLS]" and
"[SEP]" (default NULL).

Value

A tibble with word embeddings. Note that layer 0 is the input embedding to the transformer, which
is normally not used.

See Also

see textEmbedRawLayers and textEmbed

Examples

word_embeddings_layers <- textEmbedRawLayers(Language_based_assessment_data_8$harmonywords[1],
layers = 11:12)
word_embeddings <- textEmbedLayerAggregation(word_embeddings_layers$context, layers = 11)

22 textEmbedRawLayers

textEmbedRawLayers Extract layers of hidden states (word embeddings) for all character
variables in a given dataframe.

Description

Extract layers of hidden states (word embeddings) for all character variables in a given dataframe.

Usage

textEmbedRawLayers(
texts,
model = "bert-base-uncased",
layers = -2,
return_tokens = TRUE,
word_type_embeddings = FALSE,
decontextualize = FALSE,
keep_token_embeddings = TRUE,
device = "cpu",
tokenizer_parallelism = FALSE,
model_max_length = NULL,
max_token_to_sentence = 4,
logging_level = "error"

)

Arguments

texts A character variable or a tibble/dataframe with at least one character variable.

model Character string specifying pre-trained language model (default ’bert-base-uncased’).
For full list of options see pretrained models at HuggingFace. For example use
"bert-base-multilingual-cased", "openai-gpt", "gpt2", "ctrl", "transfo-xl-wt103",
"xlnet-base-cased", "xlm-mlm-enfr-1024", "distilbert-base-cased", "roberta-base",
or "xlm-roberta-base".

layers (string or numeric) Specify the layers that should be extracted (default -2, which
give the second to last layer). It is more efficient to only extract the layers that
you need (e.g., 11). You can also extract several (e.g., 11:12), or all by setting
this parameter to "all". Layer 0 is the decontextualized input layer (i.e., not
comprising hidden states) and thus should normally not be used. These layers
can then be aggregated in the textEmbedLayerAggregation function.

return_tokens If TRUE, provide the tokens used in the specified transformer model.
word_type_embeddings

(boolean) Wether to provide embeddings for each word/token type.
decontextualize

(boolean) Wether to dectonextualise embeddings (i.e., embedding one word at a
time).

https://huggingface.co/transformers/pretrained_models.html

textEmbedStatic 23

keep_token_embeddings

(boolean) Whether to keep token level embeddings in the output (when using
word_types aggregation)

device Name of device to use: ’cpu’, ’gpu’, or ’gpu:k’ where k is a specific device
number

tokenizer_parallelism

If TRUE this will turn on tokenizer parallelism. Default FALSE.

model_max_length

The maximum length (in number of tokens) for the inputs to the transformer
model (default the value stored for the associated model).

max_token_to_sentence

(numeric) Maximum number of tokens in a string to handle before switching to
embedding text sentence by sentence.

logging_level Set the logging level. Default: "warning". Options (ordered from less logging
to more logging): critical, error, warning, info, debug

Value

Returns hiddenstates/layers that can be 1. Can return three different outputA tibble with tokens,
column specifying layer and word embeddings. Note that layer 0 is the input embedding to the
transformer, and should normally not be used.

See Also

see textEmbedLayerAggregation and textEmbed

Examples

texts <- Language_based_assessment_data_8[1:2, 1:2]
word_embeddings_with_layers <- textEmbedRawLayers(texts, layers = 11:12)

textEmbedStatic Applies word embeddings from a given decontextualized static space
(such as from Latent Semantic Analyses) to all character variables

Description

Applies word embeddings from a given decontextualized static space (such as from Latent Semantic
Analyses) to all character variables

24 textGeneration

Usage

textEmbedStatic(
df,
space,
tk_df = "null",
aggregation_from_tokens_to_texts = "mean",
dim_name = FALSE,
tolower = FALSE

)

Arguments

df dataframe that at least contains one character column.

space decontextualized/static space with a column called "words" and the semantic
representations are in columns called Dim1, Dim2 (or V1, V2, ...) and so on
(from textSpace, which is not included in the current text package).

tk_df default "null"; option to use either the "tk" of "df" space (if using textSpace,
which has not been implemented yet).

aggregation_from_tokens_to_texts

method to aggregate semantic representation when their are more than a single
word. (default is "mean"; see also "min" and "max", "concatenate" and "nor-
malize")

dim_name Boolean, if TRUE append the variable name after all variable-names in the
output. (This differentiates between word embedding dimension names; e.g.,
Dim1_text_variable_name)

tolower (boolean) Lower case input.

Value

A list with tibbles for each character variable. Each tibble comprises a column with the text, fol-
lowed by columns representing the semantic representations of the text. The tibbles are called the
same as the original variable.

See Also

see textEmbed

textGeneration Predicts the words that will follow a specified text prompt. (experi-
mental)

Description

Predicts the words that will follow a specified text prompt. (experimental)

textGeneration 25

Usage

textGeneration(
x,
model = "gpt2",
device = "cpu",
tokenizer_parallelism = FALSE,
logging_level = "warning",
return_incorrect_results = FALSE,
return_tensors = FALSE,
return_text = TRUE,
return_full_text = TRUE,
clean_up_tokenization_spaces = FALSE,
prefix = "",
handle_long_generation = NULL,
set_seed = 202208L

)

Arguments

x (string) A variable or a tibble/dataframe with at least one character variable.

model (string) Specification of a pre-trained language model that have been trained
with an autoregressive language modeling objective, which includes the uni-
directional models (e.g., gpt2).

device (string) Device to use: ’cpu’, ’gpu’, or ’gpu:k’ where k is a specific device
number

tokenizer_parallelism

(boolean) If TRUE this will turn on tokenizer parallelism.

logging_level (string) Set the logging level. Options (ordered from less logging to more log-
ging): critical, error, warning, info, debug

return_incorrect_results

(boolean) Stop returning some incorrectly formatted/structured results. This set-
ting does CANOT evaluate the actual results (whether or not they make sense,
exist, etc.). All it does is to ensure the returned results are formatted correctly
(e.g., does the question-answering dictionary contain the key "answer", is senti-
ments from textClassify containing the labels "positive" and "negative").

return_tensors (boolean) Whether or not the output should include the prediction tensors (as
token indices).

return_text (boolean) Whether or not the outputs should include the decoded text.

return_full_text

(boolean) If FALSE only the added text is returned, otherwise the full text is
returned. (This setting is only meaningful if return_text is set to TRUE)

clean_up_tokenization_spaces

(boolean) Option to clean up the potential extra spaces in the returned text.

prefix (string) Option to add a prefix to prompt.

26 textModelLayers

handle_long_generation

By default, this function does not handle long generation (those that exceed the
model maximum length).

set_seed (Integer) Set seed. (more info :https://github.com/huggingface/transformers/issues/14033#issuecomment-
948385227). This setting provides some ways to work around the problem:
None: default way, where no particular strategy is applied. "hole": Truncates
left of input, and leaves a gap that is wide enough to let generation happen. (this
might truncate a lot of the prompt and not suitable when generation exceed the
model capacity)

Value

A tibble with generated text.

See Also

see textClassify, textNER, textSum, textQA, textTranslate

Examples

generated_text <- textGeneration("The meaning of life is")
generated_text

textModelLayers Get the number of layers in a given model.

Description

Get the number of layers in a given model.

Usage

textModelLayers(target_model)

Arguments

target_model (string) The name of the model to know the number of layers of.

Value

Number of layers.

See Also

see textModels

textModels 27

Examples

Not run:
textModelLayers(target_model = "bert-base-uncased")

End(Not run)

textModels Check downloaded, available models.

Description

Check downloaded, available models.

Usage

textModels()

Value

List of names of models and tokenizers

See Also

see textModelsRemove

Examples

Not run:
textModels()

End(Not run)

textModelsRemove Delete a specified model and model associated files.

Description

Delete a specified model and model associated files.

Usage

textModelsRemove(target_model)

Arguments

target_model (string) The name of the model to be deleted.

28 textNER

Value

Confirmation whether the model has been deleted.

See Also

see textModels

Examples

Not run:
textModelsRemove("name-of-model-to-delete")

End(Not run)

textNER Named Entity Recognition. (experimental)

Description

Named Entity Recognition. (experimental)

Usage

textNER(
x,
model = "dslim/bert-base-NER",
device = "cpu",
tokenizer_parallelism = FALSE,
logging_level = "error",
return_incorrect_results = FALSE,
set_seed = 202208L

)

Arguments

x (string) A variable or a tibble/dataframe with at least one character variable.

model (string) Specification of a pre-trained language model for token classification
that have been fine-tuned on a NER task (e.g., see "dslim/bert-base-NER"). Use
for predicting the classes of tokens in a sequence: person, organisation, location
or miscellaneous).

device (string) Device to use: ’cpu’, ’gpu’, or ’gpu:k’ where k is a specific device
number

tokenizer_parallelism

(boolean) If TRUE this will turn on tokenizer parallelism.

logging_level (string) Set the logging level. Options (ordered from less logging to more log-
ging): critical, error, warning, info, debug

textPCA 29

return_incorrect_results

(boolean) Stop returning some incorrectly formatted/structured results. This set-
ting does CANOT evaluate the actual results (whether or not they make sense,
exist, etc.). All it does is to ensure the returned results are formatted correctly
(e.g., does the question-answering dictionary contain the key "answer", is senti-
ments from textClassify containing the labels "positive" and "negative").

set_seed (Integer) Set seed.

Value

A list with tibble(s) with NER classifications for each column.

See Also

see textClassify, textGeneration, textNER, textSum, textQA, textTranslate

Examples

ner_example <- textNER("Arnes plays football with Daniel")
ner_example

textPCA Compute 2 PCA dimensions of the word embeddings for individual
words.

Description

Compute 2 PCA dimensions of the word embeddings for individual words.

Usage

textPCA(words, word_types_embeddings = word_types_embeddings_df, seed = 1010)

Arguments

words Word or text variable to be plotted.
word_types_embeddings

Word embeddings from textEmbed for individual words (i.e., decontextualized
embeddings).

seed Set different seed.

Value

A dataframe with words, their frquency and two PCA dimensions from the word_embeddings for
the individual words that is used for the plotting in the textPCAPlot function.

30 textPCAPlot

See Also

see textPCAPlot

Examples

Not run:
Data
df_for_plotting2d <- textPCA(

words = Language_based_assessment_data_8$harmonywords,
word_types_embeddings = word_embeddings_4$word_types

)
df_for_plotting2d

End(Not run)

textPCAPlot Plot words according to 2-D plot from 2 PCA components.

Description

Plot words according to 2-D plot from 2 PCA components.

Usage

textPCAPlot(
word_data,
min_freq_words_test = 1,
plot_n_word_extreme = 5,
plot_n_word_frequency = 5,
plot_n_words_middle = 5,
titles_color = "#61605e",
title_top = "Principal Component (PC) Plot",
x_axes_label = "PC1",
y_axes_label = "PC2",
scale_x_axes_lim = NULL,
scale_y_axes_lim = NULL,
word_font = NULL,
bivariate_color_codes = c("#398CF9", "#60A1F7", "#5dc688", "#e07f6a", "#EAEAEA",

"#40DD52", "#FF0000", "#EA7467", "#85DB8E"),
word_size_range = c(3, 8),
position_jitter_hight = 0,
position_jitter_width = 0.03,
point_size = 0.5,
arrow_transparency = 0.1,
points_without_words_size = 0.2,
points_without_words_alpha = 0.2,
legend_title = "PC",

textPCAPlot 31

legend_x_axes_label = "PC1",
legend_y_axes_label = "PC2",
legend_x_position = 0.02,
legend_y_position = 0.02,
legend_h_size = 0.2,
legend_w_size = 0.2,
legend_title_size = 7,
legend_number_size = 2,
seed = 1002

)

Arguments

word_data Dataframe from textPCA
min_freq_words_test

Select words to significance test that have occurred at least min_freq_words_test
(default = 1).

plot_n_word_extreme

Number of words that are extreme on Supervised Dimension Projection per di-
mension. (i.e., even if not significant; per dimensions, where duplicates are
removed).

plot_n_word_frequency

Number of words based on being most frequent. (i.e., even if not significant).
plot_n_words_middle

Number of words plotted that are in the middle in Supervised Dimension Pro-
jection score (i.e., even if not significant; per dimensions, where duplicates are
removed).

titles_color Color for all the titles (default: "#61605e")

title_top Title (default " ")

x_axes_label Label on the x-axes.

y_axes_label Label on the y-axes.
scale_x_axes_lim

Manually set the length of the x-axes (default = NULL, which uses ggplot2::scale_x_continuous(limits
= scale_x_axes_lim); change e.g., by trying c(-5, 5)).

scale_y_axes_lim

Manually set the length of the y-axes (default = NULL; which uses ggplot2::scale_y_continuous(limits
= scale_y_axes_lim); change e.g., by trying c(-5, 5)).

word_font Font type (default: NULL).
bivariate_color_codes

The different colors of the words (default: c("#398CF9", "#60A1F7", "#5dc688",
"#e07f6a", "#EAEAEA", "#40DD52", "#FF0000", "#EA7467", "#85DB8E")).

word_size_range

Vector with minimum and maximum font size (default: c(3, 8)).
position_jitter_hight

Jitter height (default: .0).

32 textPCAPlot

position_jitter_width

Jitter width (default: .03).

point_size Size of the points indicating the words’ position (default: 0.5).
arrow_transparency

Transparency of the lines between each word and point (default: 0.1).
points_without_words_size

Size of the points not linked with a words (default is to not show it, i.e., 0).
points_without_words_alpha

Transparency of the points not linked with a words (default is to not show it, i.e.,
0).

legend_title Title on the color legend (default: "(PCA)".
legend_x_axes_label

Label on the color legend (default: "(x)".
legend_y_axes_label

Label on the color legend (default: "(y)".
legend_x_position

Position on the x coordinates of the color legend (default: 0.02).
legend_y_position

Position on the y coordinates of the color legend (default: 0.05).

legend_h_size Height of the color legend (default 0.15).

legend_w_size Width of the color legend (default 0.15).
legend_title_size

Font size (default: 7).
legend_number_size

Font size of the values in the legend (default: 2).

seed Set different seed.

Value

A 1- or 2-dimensional word plot, as well as tibble with processed data used to plot..

See Also

see textPCA

Examples

The test-data included in the package is called: DP_projections_HILS_SWLS_100

Supervised Dimension Projection Plot
principle_component_plot_projection <- textPCAPlot(PC_projections_satisfactionwords_40)
principle_component_plot_projection

names(DP_projections_HILS_SWLS_100)

textPlot 33

textPlot Plot words from textProjection() or textWordPrediction().

Description

Plot words from textProjection() or textWordPrediction().

Usage

textPlot(
word_data,
k_n_words_to_test = FALSE,
min_freq_words_test = 1,
min_freq_words_plot = 1,
plot_n_words_square = 3,
plot_n_words_p = 5,
plot_n_word_extreme = 5,
plot_n_word_frequency = 5,
plot_n_words_middle = 5,
titles_color = "#61605e",
y_axes = FALSE,
p_alpha = 0.05,
p_adjust_method = "none",
title_top = "Supervised Dimension Projection",
x_axes_label = "Supervised Dimension Projection (SDP)",
y_axes_label = "Supervised Dimension Projection (SDP)",
scale_x_axes_lim = NULL,
scale_y_axes_lim = NULL,
word_font = NULL,
bivariate_color_codes = c("#398CF9", "#60A1F7", "#5dc688", "#e07f6a", "#EAEAEA",

"#40DD52", "#FF0000", "#EA7467", "#85DB8E"),
word_size_range = c(3, 8),
position_jitter_hight = 0,
position_jitter_width = 0.03,
point_size = 0.5,
arrow_transparency = 0.1,
points_without_words_size = 0.2,
points_without_words_alpha = 0.2,
legend_title = "SDP",
legend_x_axes_label = "x",
legend_y_axes_label = "y",
legend_x_position = 0.02,
legend_y_position = 0.02,
legend_h_size = 0.2,
legend_w_size = 0.2,
legend_title_size = 7,
legend_number_size = 2,

34 textPlot

group_embeddings1 = FALSE,
group_embeddings2 = FALSE,
projection_embedding = FALSE,
aggregated_point_size = 0.8,
aggregated_shape = 8,
aggregated_color_G1 = "black",
aggregated_color_G2 = "black",
projection_color = "blue",
seed = 1005,
explore_words = NULL,
explore_words_color = "#ad42f5",
explore_words_point = "ALL_1",
explore_words_aggregation = "mean",
remove_words = NULL,
n_contrast_group_color = NULL,
n_contrast_group_remove = FALSE,
space = NULL,
scaling = FALSE

)

Arguments

word_data Dataframe from textProjection
k_n_words_to_test

Select the k most frequent words to significance test (k = sqrt(100*N); N =
number of participant responses). Default = TRUE.

min_freq_words_test

Select words to significance test that have occurred at least min_freq_words_test
(default = 1).

min_freq_words_plot

Select words to plot that has occurred at least min_freq_words_plot times.
plot_n_words_square

Select number of significant words in each square of the figure to plot. The
significant words, in each square is selected according to most frequent words.

plot_n_words_p Number of significant words to plot on each(positive and negative) side of the
x-axes and y-axes, (where duplicates are removed); selects first according to
lowest p-value and then according to frequency. Hence, on a two dimensional
plot it is possible that plot_n_words_p = 1 yield 4 words.

plot_n_word_extreme

Number of words that are extreme on Supervised Dimension Projection per di-
mension. (i.e., even if not significant; per dimensions, where duplicates are
removed).

plot_n_word_frequency

Number of words based on being most frequent. (i.e., even if not significant).
plot_n_words_middle

Number of words plotted that are in the middle in Supervised Dimension Pro-
jection score (i.e., even if not significant; per dimensions, where duplicates are
removed).

textPlot 35

titles_color Color for all the titles (default: "#61605e")

y_axes If TRUE, also plotting on the y-axes (default is FALSE). Also plotting on y-axes
produces a two dimension 2-dimensional plot, but the textProjection function
has to have had a variable on the y-axes.

p_alpha Alpha (default = .05).
p_adjust_method

Method to adjust/correct p-values for multiple comparisons (default = "holm";
see also "none", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr").

title_top Title (default " ")

x_axes_label Label on the x-axes.

y_axes_label Label on the y-axes.
scale_x_axes_lim

Manually set the length of the x-axes (default = NULL, which uses ggplot2::scale_x_continuous(limits
= scale_x_axes_lim); change e.g., by trying c(-5, 5)).

scale_y_axes_lim

Manually set the length of the y-axes (default = NULL; which uses ggplot2::scale_y_continuous(limits
= scale_y_axes_lim); change e.g., by trying c(-5, 5)).

word_font Font type (default: NULL).
bivariate_color_codes

The different colors of the words. Note that, at the moment, two squares should
not have the exact same colour-code because the numbers within the squares of
the legend will then be aggregated (and show the same, incorrect value). (de-
fault: c("#398CF9", "#60A1F7", "#5dc688", "#e07f6a", "#EAEAEA", "#40DD52",
"#FF0000", "#EA7467", "#85DB8E")).

word_size_range

Vector with minimum and maximum font size (default: c(3, 8)).
position_jitter_hight

Jitter height (default: .0).
position_jitter_width

Jitter width (default: .03).

point_size Size of the points indicating the words’ position (default: 0.5).
arrow_transparency

Transparency of the lines between each word and point (default: 0.1).
points_without_words_size

Size of the points not linked with a words (default is to not show it, i.e., 0).
points_without_words_alpha

Transparency of the points not linked with a words (default is to not show it, i.e.,
0).

legend_title Title on the color legend (default: "(SDP)".
legend_x_axes_label

Label on the color legend (default: "(x)".
legend_y_axes_label

Label on the color legend (default: "(y)".

36 textPlot

legend_x_position

Position on the x coordinates of the color legend (default: 0.02).
legend_y_position

Position on the y coordinates of the color legend (default: 0.05).
legend_h_size Height of the color legend (default 0.15).
legend_w_size Width of the color legend (default 0.15).
legend_title_size

Font size (default: 7).
legend_number_size

Font size of the values in the legend (default: 2).
group_embeddings1

Shows a point representing the aggregated word embedding for group 1 (default
= FALSE).

group_embeddings2

Shows a point representing the aggregated word embedding for group 2 (default
= FALSE).

projection_embedding

Shows a point representing the aggregated direction embedding (default = FALSE).
aggregated_point_size

Size of the points representing the group_embeddings1, group_embeddings2
and projection_embedding.

aggregated_shape

Shape type of the points representing the group_embeddings1, group_embeddings2
and projection_embedding.

aggregated_color_G1

Color
aggregated_color_G2

Color
projection_color

Color
seed Set different seed.
explore_words Explore where specific words are positioned in the embedding space. For exam-

ple, c("happy content", "sad down").
explore_words_color

Specify the color(s) of the words being explored. For example c("#ad42f5",
"green")

explore_words_point

Specify the names of the point for the aggregated word embeddings of all the
explored words.

explore_words_aggregation

Specify how to aggregate the word embeddings of the explored words.
remove_words manually remove words from the plot (which is done just before the words are

plotted so that the remove_words are part of previous counts/analyses).
n_contrast_group_color

Set color to words that have higher frequency (N) on the other opposite side of
its dot product projection (default = NULL).

textPredict 37

n_contrast_group_remove

Remove words that have higher frequency (N) on the other opposite side of its
dot product projection (default = FALSE).

space Provide a semantic space if using static embeddings and wanting to explore
words.

scaling Scaling word embeddings before aggregation.

Value

A 1- or 2-dimensional word plot, as well as tibble with processed data used to plot.

See Also

see textProjection

Examples

The test-data included in the package is called: DP_projections_HILS_SWLS_100

Supervised Dimension Projection Plot
plot_projection <- textPlot(

word_data = DP_projections_HILS_SWLS_100,
k_n_words_to_test = FALSE,
min_freq_words_test = 1,
plot_n_words_square = 3,
plot_n_words_p = 3,
plot_n_word_extreme = 1,
plot_n_word_frequency = 1,
plot_n_words_middle = 1,
y_axes = FALSE,
p_alpha = 0.05,
title_top = "Supervised Dimension Projection (SDP)",
x_axes_label = "Low vs. High HILS score",
y_axes_label = "Low vs. High SWLS score",
p_adjust_method = "bonferroni",
scale_y_axes_lim = NULL

)
plot_projection

names(DP_projections_HILS_SWLS_100)

textPredict Predict scores or classification from, e.g., textTrain.

Description

Predict scores or classification from, e.g., textTrain.

38 textPredictAll

Usage

textPredict(
model_info,
word_embeddings,
x_append = NULL,
type = NULL,
dim_names = TRUE,
...

)

Arguments

model_info (model object) Model info (e.g., saved output from textTrain, textTrainRegres-
sion or textRandomForest).

word_embeddings

(tibble) Word embeddings

x_append (tibble) Variables to be appended after the word embeddings (x).

type (string) Type of prediction; e.g., "prob", "class".

dim_names (boolean) Account for specific dimension names from textEmbed() (rather than
generic names including Dim1, Dim2 etc.). If FALSE the models need to have
been trained on word embeddings created with dim_names FALSE, so that em-
beddings were only called Dim1, Dim2 etc.

... Setting from stats::predict can be called.

Value

Predicted scores from word embeddings.

See Also

see textTrain textTrainLists textTrainRandomForest textSimilarityTest

Examples

word_embeddings <- word_embeddings_4
ratings_data <- Language_based_assessment_data_8

textPredictAll Predict from several models, selecting the correct input

Description

Predict from several models, selecting the correct input

Usage

textPredictAll(models, word_embeddings, x_append = NULL, ...)

textPredictTest 39

Arguments

models Object containing several models.
word_embeddings

List of word embeddings (if using word embeddings from more than one text-
variable use dim_names = TRUE throughout the pipeline).

x_append A tibble/dataframe with additional variables used in the training of the models
(optional).

... Settings from textPredict.

Value

A tibble with predictions.

See Also

see textPredict and textTrain

Examples

x <- Language_based_assessment_data_8[1:2, 1:2]
word_embeddings_with_layers <- textEmbedLayersOutput(x, layers = 11:12)

textPredictTest Significance testing correlations If only y1 is provided a t-test is com-
puted, between the absolute error from yhat1-y1 and yhat2-y1.

Description

If y2 is provided a bootstrapped procedure is used to compare the correlations between y1 and
yhat1 versus y2 and yhat2. This is achieved by creating two distributions of correlations using
bootstrapping; and then finally compute the distributions overlap.

Usage

textPredictTest(
y1,
y2 = NULL,
yhat1,
yhat2,
paired = TRUE,
bootstraps_times = 10000,
seed = 6134,
...

)

40 textProjection

Arguments

y1 The observed scores (i.e., what was used to predict when training a model).

y2 The second observed scores (default = NULL; i.e., for when comparing models
that are predicting different outcomes. In this case a bootstrap procedure is used
to create two distributions of correlations that are compared (see description
above).

yhat1 The predicted scores from model 1.

yhat2 The predicted scores from model 2 that will be compared with model 1.

paired Paired test or not in stats::t.test (default TRUE).

bootstraps_times

Number of bootstraps (when providing y2).

seed Set different seed.

... Settings from stats::t.test or overlapping::overlap (e.g., plot = TRUE).

Value

Comparison of correlations either a t-test or the overlap of a bootstrapped procedure (see $OV).

See Also

see textTrain textPredict

Examples

Example random data
y1 <- runif(10)
yhat1 <- runif(10)
y2 <- runif(10)
yhat2 <- runif(10)

boot_test <- textPredictTest(y1, yhat1, y2, yhat2, bootstraps_times = 10)

textProjection Compute Supervised Dimension Projection and related variables for
plotting words.

Description

Compute Supervised Dimension Projection and related variables for plotting words.

textProjection 41

Usage

textProjection(
words,
word_embeddings,
word_types_embeddings,
x,
y = NULL,
pca = NULL,
aggregation = "mean",
split = "quartile",
word_weight_power = 1,
min_freq_words_test = 0,
mean_centering = FALSE,
mean_centering2 = FALSE,
Npermutations = 10000,
n_per_split = 50000,
seed = 1003

)

Arguments

words Word or text variable to be plotted.

word_embeddings

Word embeddings from textEmbed for the words to be plotted (i.e., the aggre-
gated word embeddings for the "words" parameter).

word_types_embeddings

Word embeddings from textEmbed for individual words (i.e., decontextualized
embeddings).

x Numeric variable that the words should be plotted according to on the x-axes.

y Numeric variable that the words should be plotted according to on the y-axes
(y=NULL).

pca Number of PCA dimensions applied to the word embeddings in the beginning
of the function. A number below 1 takes out % of variance; An integer specify
number of components to extract. (default is NULL as this setting has not yet
been evaluated).

aggregation Method to aggregate the word embeddings (default = "mean"; see also "min",
"max", and "[CLS]").

split Method to split the axes (default = "quartile" involving selecting lower and up-
per quartile; see also "mean"). However, if the variable is only containing two
different values (i.e., being dichotomous) mean split is used.

word_weight_power

Compute the power of the frequency of the words and multiply the word embed-
dings with this in the computation of aggregated word embeddings for group low
(1) and group high (2). This increases the weight of more frequent words.

42 textProjectionPlot

min_freq_words_test

Option to select words that have occurred a specified number of times (default =
0); when creating the Supervised Dimension Projection line (i.e., single words
receive Supervised Dimension Projection and p-value).

mean_centering Boolean; separately mean centering the Group 1 split aggregation embedding,
and the Group 2 split aggregation embedding

mean_centering2

Boolean; separately mean centering the G1 and G2 split aggregation embed-
dings

Npermutations Number of permutations in the creation of the null distribution.

n_per_split Setting to split Npermutations to avoid reaching computer memory limits; set it
lower than Npermutations <- and the higher it is set the faster the computation
completes, but too high may lead to abortion.

seed Set different seed.

Value

A dataframe with variables (e.g., including Supervised Dimension Projection, frequencies, p-values)
for the individual words that is used for the plotting in the textProjectionPlot function.

Examples

Data
Pre-processing data for plotting
Not run:
df_for_plotting <- textProjection(

words = Language_based_assessment_data_8$harmonywords,
word_embeddings = word_embeddings_4$texts$harmonywords,
word_types_embeddings = word_embeddings_4$word_types,
x = Language_based_assessment_data_8$hilstotal,
split = "mean",
Npermutations = 10,
n_per_split = 1

)
df_for_plotting

End(Not run)
#' @seealso see \code{\link{textProjectionPlot}}

textProjectionPlot Plot words according to Supervised Dimension Projection.

Description

Plot words according to Supervised Dimension Projection.

textProjectionPlot 43

Usage

textProjectionPlot(
word_data,
k_n_words_to_test = FALSE,
min_freq_words_test = 1,
min_freq_words_plot = 1,
plot_n_words_square = 3,
plot_n_words_p = 5,
plot_n_word_extreme = 5,
plot_n_word_frequency = 5,
plot_n_words_middle = 5,
titles_color = "#61605e",
y_axes = FALSE,
p_alpha = 0.05,
p_adjust_method = "none",
title_top = "Supervised Dimension Projection",
x_axes_label = "Supervised Dimension Projection (SDP)",
y_axes_label = "Supervised Dimension Projection (SDP)",
scale_x_axes_lim = NULL,
scale_y_axes_lim = NULL,
word_font = NULL,
bivariate_color_codes = c("#398CF9", "#60A1F7", "#5dc688", "#e07f6a", "#EAEAEA",

"#40DD52", "#FF0000", "#EA7467", "#85DB8E"),
word_size_range = c(3, 8),
position_jitter_hight = 0,
position_jitter_width = 0.03,
point_size = 0.5,
arrow_transparency = 0.1,
points_without_words_size = 0.2,
points_without_words_alpha = 0.2,
legend_title = "SDP",
legend_x_axes_label = "x",
legend_y_axes_label = "y",
legend_x_position = 0.02,
legend_y_position = 0.02,
legend_h_size = 0.2,
legend_w_size = 0.2,
legend_title_size = 7,
legend_number_size = 2,
group_embeddings1 = FALSE,
group_embeddings2 = FALSE,
projection_embedding = FALSE,
aggregated_point_size = 0.8,
aggregated_shape = 8,
aggregated_color_G1 = "black",
aggregated_color_G2 = "black",
projection_color = "blue",
seed = 1005,

44 textProjectionPlot

explore_words = NULL,
explore_words_color = "#ad42f5",
explore_words_point = "ALL_1",
explore_words_aggregation = "mean",
remove_words = NULL,
n_contrast_group_color = NULL,
n_contrast_group_remove = FALSE,
space = NULL,
scaling = FALSE

)

Arguments

word_data Dataframe from textProjection
k_n_words_to_test

Select the k most frequent words to significance test (k = sqrt(100*N); N =
number of participant responses). Default = TRUE.

min_freq_words_test

Select words to significance test that have occurred at least min_freq_words_test
(default = 1).

min_freq_words_plot

Select words to plot that has occurred at least min_freq_words_plot times.
plot_n_words_square

Select number of significant words in each square of the figure to plot. The
significant words, in each square is selected according to most frequent words.

plot_n_words_p Number of significant words to plot on each(positive and negative) side of the
x-axes and y-axes, (where duplicates are removed); selects first according to
lowest p-value and then according to frequency. Hence, on a two dimensional
plot it is possible that plot_n_words_p = 1 yield 4 words.

plot_n_word_extreme

Number of words that are extreme on Supervised Dimension Projection per di-
mension. (i.e., even if not significant; per dimensions, where duplicates are
removed).

plot_n_word_frequency

Number of words based on being most frequent. (i.e., even if not significant).
plot_n_words_middle

Number of words plotted that are in the middle in Supervised Dimension Pro-
jection score (i.e., even if not significant; per dimensions, where duplicates are
removed).

titles_color Color for all the titles (default: "#61605e")
y_axes If TRUE, also plotting on the y-axes (default is FALSE). Also plotting on y-axes

produces a two dimension 2-dimensional plot, but the textProjection function
has to have had a variable on the y-axes.

p_alpha Alpha (default = .05).
p_adjust_method

Method to adjust/correct p-values for multiple comparisons (default = "holm";
see also "none", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr").

textProjectionPlot 45

title_top Title (default " ")

x_axes_label Label on the x-axes.

y_axes_label Label on the y-axes.
scale_x_axes_lim

Manually set the length of the x-axes (default = NULL, which uses ggplot2::scale_x_continuous(limits
= scale_x_axes_lim); change e.g., by trying c(-5, 5)).

scale_y_axes_lim

Manually set the length of the y-axes (default = NULL; which uses ggplot2::scale_y_continuous(limits
= scale_y_axes_lim); change e.g., by trying c(-5, 5)).

word_font Font type (default: NULL).
bivariate_color_codes

The different colors of the words. Note that, at the moment, two squares should
not have the exact same colour-code because the numbers within the squares of
the legend will then be aggregated (and show the same, incorrect value). (de-
fault: c("#398CF9", "#60A1F7", "#5dc688", "#e07f6a", "#EAEAEA", "#40DD52",
"#FF0000", "#EA7467", "#85DB8E")).

word_size_range

Vector with minimum and maximum font size (default: c(3, 8)).
position_jitter_hight

Jitter height (default: .0).
position_jitter_width

Jitter width (default: .03).

point_size Size of the points indicating the words’ position (default: 0.5).
arrow_transparency

Transparency of the lines between each word and point (default: 0.1).
points_without_words_size

Size of the points not linked with a words (default is to not show it, i.e., 0).
points_without_words_alpha

Transparency of the points not linked with a words (default is to not show it, i.e.,
0).

legend_title Title on the color legend (default: "(SDP)".
legend_x_axes_label

Label on the color legend (default: "(x)".
legend_y_axes_label

Label on the color legend (default: "(y)".
legend_x_position

Position on the x coordinates of the color legend (default: 0.02).
legend_y_position

Position on the y coordinates of the color legend (default: 0.05).

legend_h_size Height of the color legend (default 0.15).

legend_w_size Width of the color legend (default 0.15).
legend_title_size

Font size (default: 7).

46 textProjectionPlot

legend_number_size

Font size of the values in the legend (default: 2).
group_embeddings1

Shows a point representing the aggregated word embedding for group 1 (default
= FALSE).

group_embeddings2

Shows a point representing the aggregated word embedding for group 2 (default
= FALSE).

projection_embedding

Shows a point representing the aggregated direction embedding (default = FALSE).
aggregated_point_size

Size of the points representing the group_embeddings1, group_embeddings2
and projection_embedding

aggregated_shape

Shape type of the points representing the group_embeddings1, group_embeddings2
and projection_embeddingd

aggregated_color_G1

Color
aggregated_color_G2

Color
projection_color

Color

seed Set different seed.

explore_words Explore where specific words are positioned in the embedding space. For exam-
ple, c("happy content", "sad down").

explore_words_color

Specify the color(s) of the words being explored. For example c("#ad42f5",
"green")

explore_words_point

Specify the names of the point for the aggregated word embeddings of all the
explored words.

explore_words_aggregation

Specify how to aggregate the word embeddings of the explored words.

remove_words manually remove words from the plot (which is done just before the words are
plotted so that the remove_words are part of previous counts/analyses).

n_contrast_group_color

Set color to words that have higher frequency (N) on the other opposite side of
its dot product projection (default = NULL).

n_contrast_group_remove

Remove words that have higher frequency (N) on the other opposite side of its
dot product projection (default = FALSE).

space Provide a semantic space if using static embeddings and wanting to explore
words.

scaling Scaling word embeddings before aggregation.

textQA 47

Value

A 1- or 2-dimensional word plot, as well as tibble with processed data used to plot.

See Also

see textProjection

Examples

The test-data included in the package is called: DP_projections_HILS_SWLS_100

Supervised Dimension Projection Plot
plot_projection <- textProjectionPlot(

word_data = DP_projections_HILS_SWLS_100,
k_n_words_to_test = FALSE,
min_freq_words_test = 1,
plot_n_words_square = 3,
plot_n_words_p = 3,
plot_n_word_extreme = 1,
plot_n_word_frequency = 1,
plot_n_words_middle = 1,
y_axes = FALSE,
p_alpha = 0.05,
title_top = "Supervised Dimension Projection (SDP)",
x_axes_label = "Low vs. High HILS score",
y_axes_label = "Low vs. High SWLS score",
p_adjust_method = "bonferroni",
scale_y_axes_lim = NULL

)
plot_projection

names(DP_projections_HILS_SWLS_100)

textQA Question Answering. (experimental)

Description

Question Answering. (experimental)

Usage

textQA(
question,
context,
model = "",
device = "cpu",
tokenizer_parallelism = FALSE,
logging_level = "warning",

48 textQA

return_incorrect_results = FALSE,
top_k = 1L,
doc_stride = 128L,
max_answer_len = 15L,
max_seq_len = 384L,
max_question_len = 64L,
handle_impossible_answer = FALSE,
set_seed = 202208L

)

Arguments

question (string) A question

context (string) The context(s) where the model will look for the answer.

model (string) HuggingFace name of a pre-trained language model that have been fine-
tuned on a question answering task.

device (string) Device to use: ’cpu’, ’gpu’, or ’gpu:k’ where k is a specific device
number

tokenizer_parallelism

(boolean) If TRUE this will turn on tokenizer parallelism.

logging_level (string) Set the logging level. Options (ordered from less logging to more log-
ging): critical, error, warning, info, debug

return_incorrect_results

(boolean) Stop returning some incorrectly formatted/structured results. This set-
ting does CANOT evaluate the actual results (whether or not they make sense,
exist, etc.). All it does is to ensure the returned results are formatted correctly
(e.g., does the question-answering dictionary contain the key "answer", is senti-
ments from textClassify containing the labels "positive" and "negative").

top_k (integer) (int) Indicates number of possible answer span(s) to get from the model
output.

doc_stride (integer) If the context is too long to fit with the question for the model, it will
be split into overlapping chunks. This setting controls the overlap size.

max_answer_len (integer) Max answer size to be extracted from the model’s output.

max_seq_len (integer) The max total sentence length (context + question) in tokens of each
chunk passed to the model. If needed, the context is split in chunks (using
doc_stride as overlap).

max_question_len

(integer) The max question length after tokenization. It will be truncated if
needed.

handle_impossible_answer

(boolean) Whether or not impossible is accepted as an answer.

set_seed (Integer) Set seed.

Value

Answers.

textrpp_initialize 49

See Also

see textClassify, textGeneration, textNER, textSum, textQA, textTranslate

Examples

qa_examples <- textQA(question = "Which colour have trees?",
context = "Trees typically have leaves, are mostly green and like water.")

textrpp_initialize Initialize text required python packages

Description

Initialize text required python packages to call from R.

Usage

textrpp_initialize(
python_executable = NULL,
virtualenv = NULL,
condaenv = "textrpp_condaenv",
ask = FALSE,
refresh_settings = FALSE,
save_profile = FALSE,
check_env = TRUE,
textEmbed_test = FALSE,
prompt = TRUE

)

Arguments

python_executable

the full path to the Python executable, for which text required python packages
is installed.

virtualenv set a path to the Python virtual environment with text required python packages
installed Example: virtualenv = "~/myenv"

condaenv set a path to the anaconda virtual environment with text required python pack-
ages installed Example: condalenv = "myenv"

ask logical; if FALSE, use the first text required python packages installation found;
if TRUE, list available text required python packages installations and prompt the
user for which to use. If another (e.g. python_executable) is set, then this
value will always be treated as FALSE.

refresh_settings

logical; if TRUE, text will ignore the saved settings in the profile and initiate a
search of new settings.

50 textrpp_install

save_profile logical; if TRUE, the current text required python packages setting will be saved
for the future use.

check_env logical; check whether conda/virtual environment generated by textrpp_install()
exists

textEmbed_test logical; Test whether function (textEmbed) that requires python packages works.

prompt logical; asking whether user wants to set the environment as default.

textrpp_install Install text required python packages in conda or virtualenv environ-
ment

Description

Install text required python packages (rpp) in a self-contained environment. For macOS and Linux-
based systems, this will also install Python itself via a "miniconda" environment, for textrpp_install.
Alternatively, an existing conda installation may be used, by specifying its path. The default setting
of "auto" will locate and use an existing installation automatically, or download and install one if
none exists.

For Windows, automatic installation of miniconda installation is not currently available, so the user
will need to miniconda (or Anaconda) manually.

If you wish to install Python in a "virtualenv", use the textrpp_install_virtualenv function. It
requires that you have a python version and path to it (such as "/usr/local/bin/python3.9" for Mac
and Linux.).

Usage

textrpp_install(
conda = "auto",
update_conda = FALSE,
force_conda = FALSE,
rpp_version = "rpp_version_system_specific_defaults",
python_version = "python_version_system_specific_defaults",
envname = "textrpp_condaenv",
pip = TRUE,
python_path = NULL,
prompt = TRUE

)

textrpp_install_virtualenv(
rpp_version = c("torch==1.11.0", "transformers==4.19.2", "numpy", "nltk"),
python_path = "/usr/local/bin/python3.9",
pip_version = NULL,
envname = "textrpp_virtualenv",
prompt = TRUE

)

https://conda.io/projects/conda/en/latest/user-guide/install/index.html

textrpp_uninstall 51

Arguments

conda character; path to conda executable. Default "auto" which automatically find the
path

update_conda Boolean; update to the latest version of Miniconda after install? (should be
combined with force_conda = TRUE)

force_conda Boolean; force re-installation if Miniconda is already installed at the requested
path?

rpp_version character; default is "rpp_version_system_specific_defaults", because diffent
systems require different combinations of python version and packages. It is also
possible to specify your own, such as c(’torch==0.4.1’, ’transformers==3.3.1’).

python_version character; default is "python_version_system_specific_defaults". You can spec-
ify your Python version for the condaenv yourself. installation.

envname character; name of the conda-environment to install text required python pack-
ages. Default is "textrpp_condaenv".

pip TRUE to use pip for installing rpp If FALSE, conda package manager with conda-
forge channel will be used for installing rpp.

python_path character; path to Python in virtualenv installation

prompt logical; ask whether to proceed during the installation

pip_version character;

Examples

Not run:
install text required python packages in a miniconda environment (macOS and Linux)
textrpp_install(prompt = FALSE)

install text required python packages to an existing conda environment
textrpp_install(conda = "~/anaconda/bin/")

End(Not run)
Not run:
install text required python packages in a virtual environment
textrpp_install_virtualenv()

End(Not run)

textrpp_uninstall Uninstall textrpp conda environment

Description

Removes the conda environment created by textrpp_install()

Usage

textrpp_uninstall(conda = "auto", prompt = TRUE, envname = "textrpp_condaenv")

52 textSimilarity

Arguments

conda path to conda executable, default to "auto" which automatically finds the path
prompt logical; ask whether to proceed during the installation
envname character; name of conda environment to remove

textSimilarity Compute the semantic similarity between two text variables.

Description

Compute the semantic similarity between two text variables.

Usage

textSimilarity(x, y, method = "cosine", center = TRUE, scale = FALSE)

Arguments

x Word embeddings from textEmbed.
y Word embeddings from textEmbed.
method Character string describing type of measure to be computed. Default is "cosine"

(see also "spearmen", "pearson" as well as measures from textDistance() (which
here is computed as 1 - textDistance) including "euclidean", "maximum", "man-
hattan", "canberra", "binary" and "minkowski").

center (boolean; from base::scale) If center is TRUE then centering is done by subtract-
ing the column means (omitting NAs) of x from their corresponding columns,
and if center is FALSE, no centering is done.

scale (boolean; from base::scale) If scale is TRUE then scaling is done by dividing
the (centered) columns of x by their standard deviations if center is TRUE, and
the root mean square otherwise.

Value

A vector comprising semantic similarity scores.

See Also

see textDistance, textSimilarityNorm and textSimilarityTest

Examples

library(dplyr)
similarity_scores <- textSimilarity(

x = word_embeddings_4$texts$harmonytext,
y = word_embeddings_4$texts$satisfactiontext

)
comment(similarity_scores)

textSimilarityMatrix 53

textSimilarityMatrix Compute semantic similarity scores between all combinations in a
word embedding

Description

Compute semantic similarity scores between all combinations in a word embedding

Usage

textSimilarityMatrix(x, method = "cosine", center = TRUE, scale = FALSE)

Arguments

x Word embeddings from textEmbed.

method Character string describing type of measure to be computed. Default is "cosine"
(see also "spearmen", "pearson" as well as measures from textDistance() (which
here is computed as 1 - textDistance) including "euclidean", "maximum", "man-
hattan", "canberra", "binary" and "minkowski").

center (boolean; from base::scale) If center is TRUE then centering is done by subtract-
ing the column means (omitting NAs) of x from their corresponding columns,
and if center is FALSE, no centering is done.

scale (boolean; from base::scale) If scale is TRUE then scaling is done by dividing
the (centered) columns of x by their standard deviations if center is TRUE, and
the root mean square otherwise.

Value

A matrix of semantic similarity scores

See Also

see textSimilarityNorm and textSimilarityTest

Examples

similarity_scores <- textSimilarityMatrix(word_embeddings_4$texts$harmonytext[1:3,])
round(similarity_scores, 3)

54 textSimilarityNorm

textSimilarityNorm Compute the semantic similarity between a text variable and a word
norm (i.e., a text represented by one word embedding that represent a
construct).

Description

Compute the semantic similarity between a text variable and a word norm (i.e., a text represented
by one word embedding that represent a construct).

Usage

textSimilarityNorm(x, y, method = "cosine", center = TRUE, scale = FALSE)

Arguments

x Word embeddings from textEmbed.

y Word embedding from textEmbed (from only one text).

method Character string describing type of measure to be computed. Default is "cosine"
(see also "spearmen", "pearson" as well as measures from textDistance() (which
here is computed as 1 - textDistance) including "euclidean", "maximum", "man-
hattan", "canberra", "binary" and "minkowski").

center (boolean; from base::scale) If center is TRUE then centering is done by subtract-
ing the column means (omitting NAs) of x from their corresponding columns,
and if center is FALSE, no centering is done.

scale (boolean; from base::scale) If scale is TRUE then scaling is done by dividing
the (centered) columns of x by their standard deviations if center is TRUE, and
the root mean square otherwise.

Value

A vector comprising semantic similarity scores.

See Also

see textSimilarity and textSimilarityTest

Examples

Not run:
library(dplyr)
library(tibble)
harmonynorm <- c("harmony peace ")
satisfactionnorm <- c("satisfaction achievement")

norms <- tibble::tibble(harmonynorm, satisfactionnorm)
word_embeddings <- word_embeddings_4$texts

textSimilarityTest 55

word_embeddings_wordnorm <- textEmbed(norms)
similarity_scores <- textSimilarityNorm(

word_embeddings$harmonytext,
word_embeddings_wordnorm$harmonynorm

)

End(Not run)

textSimilarityTest EXPERIMENTAL: Test whether there is a significant difference in
meaning between two sets of texts (i.e., between their word embed-
dings).

Description

EXPERIMENTAL: Test whether there is a significant difference in meaning between two sets of
texts (i.e., between their word embeddings).

Usage

textSimilarityTest(
x,
y,
similarity_method = "cosine",
Npermutations = 10000,
method = "paired",
center = FALSE,
scale = FALSE,
alternative = "greater",
output.permutations = TRUE,
N_cluster_nodes = 1,
seed = 1001

)

Arguments

x Set of word embeddings from textEmbed.

y Set of word embeddings from textEmbed.
similarity_method

Character string describing type of measure to be computed; default is "cosine"
(see also measures from textDistance (here computed as 1 - textDistance()) in-
cluding "euclidean", "maximum", "manhattan", "canberra", "binary" and "minkowski").

Npermutations Number of permutations (default 10000).

method Compute a "paired" or an "unpaired" test.

center (boolean; from base::scale) If center is TRUE then centering is done by subtract-
ing the column means (omitting NAs) of x from their corresponding columns,
and if center is FALSE, no centering is done.

56 textSum

scale (boolean; from base::scale) If scale is TRUE then scaling is done by dividing
the (centered) columns of x by their standard deviations if center is TRUE, and
the root mean square otherwise.

alternative Use a two or one-sided test (select one of: "two_sided", "less", "greater").
output.permutations

If TRUE, returns permuted values in output.
N_cluster_nodes

Number of cluster nodes to use (more makes computation faster; see parallel
package).

seed Set different seed.

Value

A list with a p-value, similarity score estimate and permuted values if output.permutations=TRUE.

Examples

x <- word_embeddings_4$texts$harmonywords
y <- word_embeddings_4$texts$satisfactionwords
textSimilarityTest(x,

y,
method = "paired",
Npermutations = 100,
N_cluster_nodes = 1,
alternative = "two_sided"

)

textSum Summarize texts. (experimental)

Description

Summarize texts. (experimental)

Usage

textSum(
x,
min_length = 10L,
max_length = 20L,
model = "t5-small",
device = "cpu",
tokenizer_parallelism = FALSE,
logging_level = "warning",
return_incorrect_results = FALSE,
return_text = TRUE,
return_tensors = FALSE,

textSum 57

clean_up_tokenization_spaces = FALSE,
set_seed = 202208L

)

Arguments

x (string) A variable or a tibble/dataframe with at least one character variable.
min_length (explicit integer; e.g., 10L) The minimum number of tokens in the summed

output.
max_length (explicit integer higher than min_length; e.g., 20L) The maximum number of

tokens in the summed output.
model (string) Specififcation of a pre-trained language model that have been fine-tuned

on a summarization task, such as ’bart-large-cnn’, ’t5-small’, ’t5-base’, ’t5-
large’, ’t5-3b’, ’t5-11b’.

device (string) Device to use: ’cpu’, ’gpu’, or ’gpu:k’ where k is a specific device
number.

tokenizer_parallelism

(boolean) If TRUE this will turn on tokenizer parallelism.
logging_level (string) Set the logging level. Options (ordered from less logging to more log-

ging): critical, error, warning, info, debug
return_incorrect_results

(boolean) Stop returning some incorrectly formatted/structured results. This set-
ting does CANOT evaluate the actual results (whether or not they make sense,
exist, etc.). All it does is to ensure the returned results are formatted correctly
(e.g., does the question-answering dictionary contain the key "answer", is senti-
ments from textClassify containing the labels "positive" and "negative").

return_text (boolean) Whether or not the outputs should include the decoded text.
return_tensors (boolean) Whether or not the output should include the prediction tensors (as

token indices).
clean_up_tokenization_spaces

(boolean) Option to clean up the potential extra spaces in the returned text.
set_seed (Integer) Set seed.

Value

A tibble with summed text(s).

See Also

see textClassify, textGeneration, textNER, textSum, textQA, textTranslate

Examples

sum_examples <- textSum(Language_based_assessment_data_8[1:2,1:2],
min_length = 5L,
max_length = 10L)

58 textTokenize

textTokenize Tokenize according to different huggingface transformers

Description

Tokenize according to different huggingface transformers

Usage

textTokenize(
texts,
model = "bert-base-uncased",
max_token_to_sentence = 4,
device = "cpu",
tokenizer_parallelism = FALSE,
model_max_length = NULL,
logging_level = "error"

)

Arguments

texts A character variable or a tibble/dataframe with at least one character variable.

model Character string specifying pre-trained language model (default ’bert-base-uncased’).
For full list of options see pretrained models at HuggingFace. For example use
"bert-base-multilingual-cased", "openai-gpt", "gpt2", "ctrl", "transfo-xl-wt103",
"xlnet-base-cased", "xlm-mlm-enfr-1024", "distilbert-base-cased", "roberta-base",
or "xlm-roberta-base".

max_token_to_sentence

(numeric) Maximum number of tokens in a string to handle before switching to
embedding text sentence by sentence.

device Name of device to use: ’cpu’, ’gpu’, or ’gpu:k’ where k is a specific device
number

tokenizer_parallelism

If TRUE this will turn on tokenizer parallelism. Default FALSE.
model_max_length

The maximum length (in number of tokens) for the inputs to the transformer
model (default the value stored for the associated model).

logging_level Set the logging level. Default: "warning". Options (ordered from less logging
to more logging): critical, error, warning, info, debug

Value

Returns tokens according to specified huggingface transformer.

See Also

see textEmbed

https://huggingface.co/transformers/pretrained_models.html

textTrain 59

Examples

tokens <- textTokenize("hello are you?")

textTrain Train word embeddings to a numeric (ridge regression) or categorical
(random forest) variable.

Description

Train word embeddings to a numeric (ridge regression) or categorical (random forest) variable.

Usage

textTrain(x, y, force_train_method = "automatic", ...)

Arguments

x Word embeddings from textEmbed (or textEmbedLayerAggreation). Can ana-
lyze several variables at the same time; but if training to several outcomes at the
same time use a tibble within the list as input rather than just a tibble input (i.e.,
keep the name of the wordembedding).

y Numeric variable to predict. Can be several; although then make sure to have
them within a tibble (this is required even if it is only one outcome but several
word embeddings variables).

force_train_method

default is "automatic", so if y is a factor random_forest is used, and if y is nu-
meric ridge regression is used. This can be overridden using "regression" or
"random_forest".

... Arguments from textTrainRegression or textTrainRandomForest the textTrain
function.

Value

A correlation between predicted and observed values; as well as a tibble of predicted values.

See Also

textTrainRegression textTrainRandomForest textTrainLists textSimilarityTest

60 textTrainLists

Examples

Not run:
results <- textTrain(

x = word_embeddings_4$texts$harmonytext,
y = Language_based_assessment_data_8$hilstotal

)

End(Not run)

textTrainLists Individually trains word embeddings from several text variables to sev-
eral numeric or categorical variables. It is possible to have word em-
beddings from one text variable and several numeric/categprical vari-
ables; or vice verse, word embeddings from several text variables to
one numeric/categorical variable. It is not possible to mix numeric
and categorical variables.

Description

Individually trains word embeddings from several text variables to several numeric or categori-
cal variables. It is possible to have word embeddings from one text variable and several nu-
meric/categprical variables; or vice verse, word embeddings from several text variables to one
numeric/categorical variable. It is not possible to mix numeric and categorical variables.

Usage

textTrainLists(
x,
y,
force_train_method = "automatic",
save_output = "all",
method_cor = "pearson",
eval_measure = "rmse",
p_adjust_method = "holm",
...

)

Arguments

x Word embeddings from textEmbed (or textEmbedLayerAggreation).

y Tibble with several numeric or categorical variables to predict. Please note that
you cannot mix numeric and categorical variables.

force_train_method

Default is "automatic"; see also "regression" and "random_forest".

save_output Option not to save all output; default "all". see also "only_results" and "only_results_predictions".

method_cor A character string describing type of correlation (default "Pearson").

textTrainRandomForest 61

eval_measure Type of evaluative measure to assess models on.
p_adjust_method

Method to adjust/correct p-values for multiple comparisons (default = "holm";
see also "none", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr").

... Arguments from textTrainRegression or textTrainRandomForest the textTrain
function.

Value

Correlations between predicted and observed values.

See Also

see textTrain textTrainRegression textTrainRandomForest

Examples

Not run:
word_embeddings <- word_embeddings_4$texts[1:2]
ratings_data <- Language_based_assessment_data_8[5:6]
results <- textTrainLists(

x = word_embeddings,
y = ratings_data

)
results
comment(results)

End(Not run)

textTrainRandomForest Train word embeddings to a categorical variable using random for-
rest.

Description

Train word embeddings to a categorical variable using random forrest.

Usage

textTrainRandomForest(
x,
y,
x_append = NULL,
cv_method = "validation_split",
outside_folds = 10,
outside_strata_y = "y",
outside_breaks = 4,
inside_folds = 3/4,

62 textTrainRandomForest

inside_strata_y = "y",
inside_breaks = 4,
mode_rf = "classification",
preprocess_step_center = FALSE,
preprocess_scale_center = FALSE,
preprocess_PCA = NA,
extremely_randomised_splitrule = "extratrees",
mtry = c(1, 10, 20, 40),
min_n = c(1, 10, 20, 40),
trees = c(1000),
eval_measure = "bal_accuracy",
model_description = "Consider writing a description of your model here",
multi_cores = "multi_cores_sys_default",
save_output = "all",
seed = 2020,
...

)

Arguments

x Word embeddings from textEmbed.

y Categorical variable to predict.

x_append Variables to be appended after the word embeddings (x); if wanting to preappend
them before the word embeddings use the option first = TRUE. If not wanting
to train with word embeddings, set x = NULL.

cv_method Cross-validation method to use within a pipeline of nested outer and inner loops
of folds (see nested_cv in rsample). Default is using cv_folds in the outside
folds and "validation_split" using rsample::validation_split in the inner loop to
achieve a development and assessment set (note that for validation_split the in-
side_folds should be a proportion, e.g., inside_folds = 3/4); whereas "cv_folds"
uses rsample::vfold_cv to achieve n-folds in both the outer and inner loops.

outside_folds Number of folds for the outer folds (default = 10).
outside_strata_y

Variable to stratify according (default "y"; can also set to NULL).

outside_breaks The number of bins wanted to stratify a numeric stratification variable in the
outer cross-validation loop.

inside_folds Number of folds for the inner folds (default = 3/4).
inside_strata_y

Variable to stratify according (default "y"; can also set to NULL).

inside_breaks The number of bins wanted to stratify a numeric stratification variable in the
inner cross-validation loop.

mode_rf Default is "classification" ("regression" is not supported yet).
preprocess_step_center

normalizes dimensions to have a mean of zero; default is set to TRUE. For more
info see (step_center in recipes).

textTrainRandomForest 63

preprocess_scale_center

normalize dimensions to have a standard deviation of one. For more info see
(step_scale in recipes).

preprocess_PCA Pre-processing threshold for PCA. Can select amount of variance to retain (e.g.,
.90 or as a grid c(0.80, 0.90)); or number of components to select (e.g., 10). De-
fault is "min_halving", which is a function that selects the number of PCA com-
ponents based on number of participants and feature (word embedding dimen-
sions) in the data. The formula is: preprocess_PCA = round(max(min(number_features/2),
number_participants/2), min(50, number_features))).

extremely_randomised_splitrule

default: "extratrees", which thus implement a random forest; can also select:
NULL, "gini" or "hellinger"; if these are selected your mtry settings will be
overridden (see Geurts et al. (2006) Extremely randomized trees for details; and
see the ranger r-package for details on implementations).

mtry hyper parameter that may be tuned; default:c(1, 20, 40),

min_n hyper parameter that may be tuned; default: c(1, 20, 40)

trees Number of trees to use (default 1000).

eval_measure Measure to evaluate the models in order to select the best hyperparameters de-
fault "roc_auc"; see also "accuracy", "bal_accuracy", "sens", "spec", "preci-
sion", "kappa", "f_measure".

model_description

Text to describe your model (optional; good when sharing the model with oth-
ers).

multi_cores If TRUE it enables the use of multiple cores if the computer system allows for
it (i.e., only on unix, not windows). Hence it makes the analyses considerably
faster to run. Default is "multi_cores_sys_default", where it automatically uses
TRUE for Mac and Linux and FALSE for Windows.

save_output Option not to save all output; default "all". see also "only_results" and "only_results_predictions".

seed Set different seed.

... For example settings in yardstick::accuracy to set event_level (e.g., event_level
= "second").

Value

A list with roc_curve_data, roc_curve_plot, truth and predictions, preprocessing_recipe, final_model,
model_description chisq and fishers test as well as evaluation measures, e.g., including accuracy,
f_meas and roc_auc (for details on these measures see the yardstick r-package documentation).

See Also

see textTrainLists textSimilarityTest

Examples

results <- textTrainRandomForest(

64 textTrainRegression

x = word_embeddings_4$texts$harmonywords,
y = as.factor(Language_based_assessment_data_8$gender),
trees = c(1000, 1500),
mtry = c(1), # this is short because of testing
min_n = c(1), # this is short because of testing
multi_cores = FALSE # This is FALSE due to CRAN testing and Windows machines.

)

textTrainRegression Train word embeddings to a numeric variable.

Description

Train word embeddings to a numeric variable.

Usage

textTrainRegression(
x,
y,
x_append = NULL,
cv_method = "validation_split",
outside_folds = 10,
outside_strata_y = "y",
outside_breaks = 4,
inside_folds = 3/4,
inside_strata_y = "y",
inside_breaks = 4,
model = "regression",
eval_measure = "default",
preprocess_step_center = TRUE,
preprocess_step_scale = TRUE,
preprocess_PCA = NA,
penalty = 10^seq(-16, 16),
mixture = c(0),
first_n_predictors = NA,
impute_missing = FALSE,
method_cor = "pearson",
model_description = "Consider writing a description of your model here",
multi_cores = "multi_cores_sys_default",
save_output = "all",
seed = 2020,
...

)

textTrainRegression 65

Arguments

x Word embeddings from textEmbed (or textEmbedLayerAggregation). If several
word embedding are provided in a list they will be concatenated.

y Numeric variable to predict.

x_append Variables to be appended after the word embeddings (x); if wanting to preappend
them before the word embeddings use the option first = TRUE. If not wanting
to train with word embeddings, set x = NULL.

cv_method Cross-validation method to use within a pipeline of nested outer and inner loops
of folds (see nested_cv in rsample). Default is using cv_folds in the outside
folds and "validation_split" using rsample::validation_split in the inner loop to
achieve a development and assessment set (note that for validation_split the in-
side_folds should be a proportion, e.g., inside_folds = 3/4); whereas "cv_folds"
uses rsample::vfold_cv to achieve n-folds in both the outer and inner loops.

outside_folds Number of folds for the outer folds (default = 10).
outside_strata_y

Variable to stratify according (default y; can set to NULL).

outside_breaks The number of bins wanted to stratify a numeric stratification variable in the
outer cross-validation loop.

inside_folds The proportion of data to be used for modeling/analysis; (default proportion =
3/4). For more information see validation_split in rsample.

inside_strata_y

Variable to stratify according (default y; can set to NULL).

inside_breaks The number of bins wanted to stratify a numeric stratification variable in the
inner cross-validation loop.

model Type of model. Default is "regression"; see also "logistic" for classification.

eval_measure Type of evaluative measure to select models from. Default = "rmse" for regres-
sion and "bal_accuracy" for logistic. For regression use "rsq" or "rmse"; and
for classification use "accuracy", "bal_accuracy", "sens", "spec", "precision",
"kappa", "f_measure", or "roc_auc",(for more details see the yardstick package).

preprocess_step_center

normalizes dimensions to have a mean of zero; default is set to TRUE. For more
info see (step_center in recipes).

preprocess_step_scale

normalize dimensions to have a standard deviation of one. For more info see
(step_scale in recipes).

preprocess_PCA Pre-processing threshold for PCA (to skip this step set it to NA). Can select
amount of variance to retain (e.g., .90 or as a grid c(0.80, 0.90)); or number of
components to select (e.g., 10). Default is "min_halving", which is a function
that selects the number of PCA components based on number of participants
and feature (word embedding dimensions) in the data. The formula is: prepro-
cess_PCA = round(max(min(number_features/2), number_participants/2), min(50,
number_features))).

penalty hyper parameter that is tuned

66 textTrainRegression

mixture A number between 0 and 1 (inclusive) that reflects the proportion of L1 reg-
ularization (i.e. lasso) in the model (for more information see the linear_reg-
function in the parsnip-package). When mixture = 1, it is a pure lasso model
while mixture = 0 indicates that ridge regression is being used (specific engines
only).

first_n_predictors

by default this setting is turned off (i.e., NA). To use this method, set it to the
highest number of predictors you want to test. Then the X first dimensions are
used in training, using a sequence from Kjell et al., 2019 paper in Psychological
Methods. Adding 1, then multiplying by 1.3 and finally rounding to the nearest
integer (e.g., 1, 3, 5, 8). This option is currently only possible for one embedding
at the time.

impute_missing default FALSE (can be set to TRUE if something else than word_embeddings
are trained).

method_cor Type of correlation used in evaluation (default "pearson"; can set to "spearman"
or "kendall").

model_description

Text to describe your model (optional; good when sharing the model with oth-
ers).

multi_cores If TRUE it enables the use of multiple cores if the computer system allows for
it (i.e., only on unix, not windows). Hence it makes the analyses considerably
faster to run. Default is "multi_cores_sys_default", where it automatically uses
TRUE for Mac and Linux and FALSE for Windows.

save_output Option not to save all output; default "all". see also "only_results" and "only_results_predictions".

seed Set different seed.

... For example settings in yardstick::accuracy to set event_level (e.g., event_level
= "second").

Value

A (one-sided) correlation test between predicted and observed values; tibble of predicted values, as
well as information about the model (preprossing_recipe, final_model and model_description).

See Also

see textEmbedLayerAggregation textTrainLists textTrainRandomForest textSimilarityTest

Examples

results <- textTrainRegression(
x = word_embeddings_4$texts$harmonytext,
y = Language_based_assessment_data_8$hilstotal,
multi_cores = FALSE # This is FALSE due to CRAN testing and Windows machines.

)

textTranslate 67

textTranslate Translation. (experimental)

Description

Translation. (experimental)

Usage

textTranslate(
x,
source_lang = "",
target_lang = "",
model = "xlm-roberta-base",
device = "cpu",
tokenizer_parallelism = FALSE,
logging_level = "warning",
return_incorrect_results = FALSE,
return_tensors = FALSE,
return_text = TRUE,
clean_up_tokenization_spaces = FALSE,
set_seed = 202208L

)

Arguments

x (string) The text to be translated.

source_lang (string) The input language. Might be needed for multilingual models (it will
not have any effect for single pair translation models). using ISO 639-1 Code,
such as: "en", "zh", "es", "fr", "de", "it", "sv", "da", "nn".

target_lang (string) The desired language output. Might be required for multilingual models
(will not have any effect for single pair translation models).

model (string) Specify a pre-trained language model that have been fine-tuned on a
translation task.

device (string) Name of device to use: ’cpu’, ’gpu’, or ’gpu:k’ where k is a specific
device number

tokenizer_parallelism

(boolean) If TRUE this will turn on tokenizer parallelism.

logging_level (string) Set the logging level. Options (ordered from less logging to more log-
ging): critical, error, warning, info, debug

return_incorrect_results

(boolean) Stop returning some incorrectly formatted/structured results. This set-
ting does CANOT evaluate the actual results (whether or not they make sense,
exist, etc.). All it does is to ensure the returned results are formatted correctly
(e.g., does the question-answering dictionary contain the key "answer", is senti-
ments from textClassify containing the labels "positive" and "negative").

68 textWordPrediction

return_tensors (boolean) Whether or not to include the predictions’ tensors as token indices in
the outputs.

return_text (boolean) Whether or not to also output the decoded texts.
clean_up_tokenization_spaces

(boolean) Whether or not to clean the output from potential extra spaces.

set_seed (Integer) Set seed.

Value

A tibble with transalted text.

See Also

see textClassify, textGeneration, textNER, textSum, and textQA

Examples

translation_example <- text::textTranslate(
Language_based_assessment_data_8[1,1:2],
source_lang = "en",
target_lang = "fr",
model = "t5-base")

textWordPrediction Compute predictions based on single words for plotting words. The
word embeddings of single words are trained to predict the mean value
associated with that word. P-values does NOT work yet.

Description

Compute predictions based on single words for plotting words. The word embeddings of single
words are trained to predict the mean value associated with that word. P-values does NOT work
yet.

Usage

textWordPrediction(
words,
word_types_embeddings = word_types_embeddings_df,
x,
y = NULL,
seed = 1003,
case_insensitive = TRUE,
text_remove = "[()]",
...

)

textZeroShot 69

Arguments

words Word or text variable to be plotted.

word_types_embeddings

Word embeddings from textEmbed for individual words (i.e., decontextualized
embeddings).

x Numeric variable that the words should be plotted according to on the x-axes.

y Numeric variable that the words should be plotted according to on the y-axes
(y=NULL).

seed Set different seed.
case_insensitive

When TRUE all words are made lower case.

text_remove Remove special characters

... Training options from textTrainRegression().

Value

A dataframe with variables (e.g., including trained (out of sample) predictions, frequencies, p-
values) for the individual words that is used for the plotting in the textProjectionPlot function.

Examples

Data
Pre-processing data for plotting
Not run:
df_for_plotting <- textWordPrediction(

words = Language_based_assessment_data_8$harmonywords,
word_types_embeddings = word_embeddings_4$word_types,
x = Language_based_assessment_data_8$hilstotal

)
df_for_plotting

End(Not run)
#' @seealso see \code{\link{textProjection}}

textZeroShot Zero Shot Classification (Experimental)

Description

Zero Shot Classification (Experimental)

70 textZeroShot

Usage

textZeroShot(
sequences,
candidate_labels,
hypothesis_template = "This example is {}.",
multi_label = FALSE,
model = "",
device = "cpu",
tokenizer_parallelism = FALSE,
logging_level = "error",
return_incorrect_results = FALSE,
set_seed = 202208L

)

Arguments

sequences (string) The sequence(s) to classify (not that they will be truncated if the model
input is too large).

candidate_labels

(string) The set of class labels that is possible in the to classification of each
sequence. It may be a single label, a string of comma-separated labels, or a list
of labels.

hypothesis_template

(string; optional) The template that is used for turning each of the label into an
NLI-style hypothesis. This template must include a "" or similar syntax so that
the candidate label can be inserted into the template. For example, the default
template is "This example is ." With the candidate label "sports", this would
be fed into the model like "<cls> sequence to classify <sep> This example is
sports . <sep>". The default template works well in many cases, but it may be
worthwhile to experiment with different templates depending on the task setting
(see https://huggingface.co/docs/transformers/).

multi_label (boolean; optional) It indicates whether multiple candidate labels can be true. If
FALSE, the scores are normalized such that the sum of the label likelihoods for
each sequence is 1. If TRUE, the labels are considered independent and proba-
bilities are normalized for each candidate by doing a softmax of the entailment
score vs. the contradiction score.

model (string) Specify a pre-trained language model that have been fine-tuned on a
translation task.

device (string) Name of device to use: ’cpu’, ’gpu’, or ’gpu:k’ where k is a specific
device number

tokenizer_parallelism

(boolean) If TRUE this will turn on tokenizer parallelism.

logging_level (string) Set the logging level. Options (ordered from less logging to more log-
ging): critical, error, warning, info, debug

return_incorrect_results

(boolean) Stop returning some incorrectly formatted/structured results. This set-
ting does CANOT evaluate the actual results (whether or not they make sense,

word_embeddings_4 71

exist, etc.). All it does is to ensure the returned results are formatted correctly
(e.g., does the question-answering dictionary contain the key "answer", is senti-
ments from textClassify containing the labels "positive" and "negative").

set_seed (Integer) Set seed.

Value

A tibble with the result with the following keys: sequence (string) The imputed sequence. labels
(string) The labels sorted in the order of likelihood. scores (numeric) The probabilities for each of
the labels.

See Also

see textClassify, textGeneration, textNER, textSum, textQA, textTranslate

Examples

ZeroShot_example <- text::textZeroShot(sequences = c("I play football",
"The forest is wonderful"),
candidate_labels = c("sport", "nature", "research"),
model = "facebook/bart-large-mnli")

word_embeddings_4 Word embeddings for 4 text variables for 40 participants

Description

The dataset is a shortened version of the data sets of Study 3-5 from Kjell, Kjell, Garcia and Sik-
ström 2018.

Usage

word_embeddings_4

Format

A list with word embeddings for harmony words, satisfaction words, harmony text, satisfaction text
and decontextualized word embeddings. BERT-base embeddings based on mean aggregation of
layer 11 and 12.

words words
n word frequency
Dim1:Dim768 Word embeddings dimensions

Source

https://psyarxiv.com/er6t7/

https://psyarxiv.com/er6t7/

Index

∗ datasets
centrality_data_harmony, 3
DP_projections_HILS_SWLS_100, 4
Language_based_assessment_data_3_100,

5
Language_based_assessment_data_8,

5
PC_projections_satisfactionwords_40,

6
raw_embeddings_1, 7
word_embeddings_4, 71

centrality_data_harmony, 3

DP_projections_HILS_SWLS_100, 4

Language_based_assessment_data_3_100,
5

Language_based_assessment_data_8, 5

PC_projections_satisfactionwords_40, 6

raw_embeddings_1, 7

textCentrality, 7, 11
textCentralityPlot, 8, 8
textClassify, 11, 26, 29, 49, 57, 68, 71
textDescriptives, 13
textDimName, 14, 19, 20
textDistance, 15, 17, 52
textDistanceMatrix, 16
textDistanceNorm, 16, 17
textEmbed, 14, 18, 21, 23, 24, 58
textEmbedLayerAggregation, 20, 20, 23, 66
textEmbedRawLayers, 20, 21, 22
textEmbedStatic, 23
textGeneration, 12, 24, 29, 49, 57, 68, 71
textModelLayers, 26
textModels, 26, 27, 28
textModelsRemove, 27, 27
textNER, 12, 26, 28, 29, 49, 57, 68, 71

textPCA, 29, 32
textPCAPlot, 30, 30
textPlot, 33
textPredict, 37, 39, 40
textPredictAll, 38
textPredictTest, 39
textProjection, 8, 11, 37, 40, 47
textProjectionPlot, 42
textQA, 12, 26, 29, 47, 49, 57, 68, 71
textrpp_initialize, 49
textrpp_install, 50
textrpp_install_virtualenv

(textrpp_install), 50
textrpp_uninstall, 51
textSimilarity, 15, 52, 54
textSimilarityMatrix, 53
textSimilarityNorm, 15, 52, 53, 54
textSimilarityTest, 15–17, 38, 52–54, 55,

59, 63, 66
textSum, 12, 26, 29, 49, 56, 57, 68, 71
textTokenize, 58
textTrain, 38–40, 59, 61
textTrainLists, 38, 59, 60, 63, 66
textTrainRandomForest, 38, 59, 61, 61, 66
textTrainRegression, 59, 61, 64
textTranslate, 12, 26, 29, 49, 57, 67, 71
textWordPrediction, 68
textZeroShot, 69

word_embeddings_4, 71

72

	centrality_data_harmony
	DP_projections_HILS_SWLS_100
	Language_based_assessment_data_3_100
	Language_based_assessment_data_8
	PC_projections_satisfactionwords_40
	raw_embeddings_1
	textCentrality
	textCentralityPlot
	textClassify
	textDescriptives
	textDimName
	textDistance
	textDistanceMatrix
	textDistanceNorm
	textEmbed
	textEmbedLayerAggregation
	textEmbedRawLayers
	textEmbedStatic
	textGeneration
	textModelLayers
	textModels
	textModelsRemove
	textNER
	textPCA
	textPCAPlot
	textPlot
	textPredict
	textPredictAll
	textPredictTest
	textProjection
	textProjectionPlot
	textQA
	textrpp_initialize
	textrpp_install
	textrpp_uninstall
	textSimilarity
	textSimilarityMatrix
	textSimilarityNorm
	textSimilarityTest
	textSum
	textTokenize
	textTrain
	textTrainLists
	textTrainRandomForest
	textTrainRegression
	textTranslate
	textWordPrediction
	textZeroShot
	word_embeddings_4
	Index

