
Package ‘text2vec’
November 30, 2022

Type Package

Version 0.6.3

Title Modern Text Mining Framework for R

License GPL (>= 2) | file LICENSE

Description Fast and memory-friendly tools for text vectorization, topic
modeling (LDA, LSA), word embeddings (GloVe), similarities. This package
provides a source-agnostic streaming API, which allows researchers to perform
analysis of collections of documents which are larger than available RAM. All
core functions are parallelized to benefit from multicore machines.

Maintainer Dmitriy Selivanov <selivanov.dmitriy@gmail.com>

Encoding UTF-8

SystemRequirements C++11

Depends R (>= 3.6.0), methods

Imports Matrix (>= 1.5), Rcpp (>= 1.0.3), R6 (>= 2.3.0), data.table(>=
1.9.6), rsparse (>= 0.3.3.4), stringi (>= 1.1.5), mlapi (>=
0.1.0), lgr (>= 0.2), digest (>= 0.6.8)

LinkingTo Rcpp, digest (>= 0.6.8)

Suggests magrittr, udpipe (>= 0.6), glmnet, testthat, covr, knitr,
rmarkdown, proxy

URL http://text2vec.org

BugReports https://github.com/dselivanov/text2vec/issues

VignetteBuilder knitr

LazyData true

RoxygenNote 7.2.1

NeedsCompilation yes

Author Dmitriy Selivanov [aut, cre, cph],
Manuel Bickel [aut, cph] (Coherence measures for topic models),
Qing Wang [aut, cph] (Author of the WaprLDA C++ code)

Repository CRAN

Date/Publication 2022-11-30 09:20:02 UTC

1

http://text2vec.org
https://github.com/dselivanov/text2vec/issues

2 as.lda_c

R topics documented:
as.lda_c . 2
BNS . 3
check_analogy_accuracy . 4
coherence . 4
Collocations . 8
combine_vocabularies . 10
create_dtm . 11
create_tcm . 13
create_vocabulary . 14
distances . 16
GloVe . 17
ifiles . 18
itoken . 19
jsPCA_robust . 21
LatentDirichletAllocation . 21
LatentSemanticAnalysis . 23
movie_review . 24
normalize . 25
perplexity . 25
prepare_analogy_questions . 26
prune_vocabulary . 27
RelaxedWordMoversDistance . 27
similarities . 29
split_into . 30
text2vec . 30
TfIdf . 31
tokenizers . 32
vectorizers . 33

Index 35

as.lda_c Converts document-term matrix sparse matrix to ’lda_c’ format

Description

Converts ’dgCMatrix’ (or coercible to ’dgCMatrix’) to ’lda_c’ format

Usage

as.lda_c(X)

Arguments

X Document-Term matrix

BNS 3

BNS BNS

Description

Creates BNS (bi-normal separation) model. Defined as: Q(true positive rate) - Q(false positive
rate), where Q is a quantile function of normal distribution.

Usage

BNS

Format

R6Class object.

Details

Bi-Normal Separation

Fields

bns_stat data.table with computed BNS statistic. Useful for feature selection.

Usage

For usage details see Methods, Arguments and Examples sections.

bns = BNS$new(treshold = 0.0005)
bns$fit_transform(x, y)
bns$transform(x)

Methods

$new(treshold = 0.0005) Creates bns model

$fit_transform(x, y) fit model to an input sparse matrix (preferably in "dgCMatrix" format)
and then transforms it.

$transform(x) transform new data x using bns from train data

Arguments

bns A BNS object

x An input document term matrix. Preferably in dgCMatrix format

y Binary target variable coercible to logical.

treshold Clipping treshold to avoid infinities in quantile function.

4 coherence

Examples

data("movie_review")
N = 1000
it = itoken(head(movie_review$review, N), preprocessor = tolower, tokenizer = word_tokenizer)
vocab = create_vocabulary(it)
dtm = create_dtm(it, vocab_vectorizer(vocab))
model_bns = BNS$new()
dtm_bns = model_bns$fit_transform(dtm, head(movie_review$sentiment, N))

check_analogy_accuracy

Checks accuracy of word embeddings on the analogy task

Description

This function checks how well the GloVe word embeddings do on the analogy task. For full exam-
ples see GloVe.

Usage

check_analogy_accuracy(questions_list, m_word_vectors)

Arguments

questions_list list of questions. Each element of questions_list is a integer matrix with
four columns. It represents a set of questions related to a particular category.
Each element of matrix is an index of a row in m_word_vectors. See output of
prepare_analogy_questions for details

m_word_vectors word vectors numeric matrix. Each row should represent a word.

See Also

prepare_analogy_questions, GloVe

coherence Coherence metrics for topic models

Description

Given a topic model with topics represented as ordered term lists, the coherence may be used to
assess the quality of individual topics. This function is an implementation of several of the numer-
ous possible metrics for such kind of assessments. Coherence calculation is sensitive to the content
of the reference tcm that is used for evaluation and that may be created with different parameter
settings. Please refer to the details section (or reference section) for information on typical combi-
nations of metric and type of tcm. For more general information on measuring coherence a starting
point is given in the reference section.

coherence 5

Usage

coherence(x, tcm, metrics = c("mean_logratio", "mean_pmi", "mean_npmi",
"mean_difference", "mean_npmi_cosim", "mean_npmi_cosim2"),
smooth = 1e-12, n_doc_tcm = -1)

Arguments

x A character matrix with the top terms per topic (each column represents one
topic), e.g., as created by get_top_words(). Terms of x have to be ranked per
topic starting with rank 1 in row 1.

tcm The term co-occurrence matrix, e.g, a Matrix::sparseMatrix or base::matrix,
serving as the reference to calculate coherence metrics. Please note that a mem-
ory efficient version of the tcm is assumed as input with all entries in the lower
triangle (excluding diagonal) set to zero (see, e.g., create_tcm). Please also
note that some efforts during any pre-processing steps might be skipped since
the tcm is internally reduced to the top word space, i.e., all unique terms of x.

metrics Character vector specifying the metrics to be calculated. Currently the following
metrics are implemented: c("mean_logratio", "mean_pmi", "mean_npmi",
"mean_difference", "mean_npmi_cosim", "mean_npmi_cosim2"). Please re-
fer to the details section for more information on the metrics.

smooth Numeric smoothing constant to avoid logarithm of zero. By default, set to
1e-12.

n_doc_tcm The integer number of documents or text windows that was used to create
the tcm. n_doc_tcm is used to calculate term probabilities from term counts as
required for several metrics.

Details

The currently implemented coherence metrics are described below including a description of the
content type of the tcm that showed good performance in combination with a specific metric.
For details on how to create tcm see the example section.
For details on performance of metrics see the resources in the reference section that served for
definition of standard settings for individual metrics.
Note that depending on the use case, still, different settings than the standard settings for creation
of tcm may be reasonable.
Note that for all currently implemented metrics the tcm is reduced to the top word space on basis of
the terms in x.

Considering the use case of finding the optimum number of topics among several models with
different metrics, calculating the mean score over all topics and normalizing this mean coherence
scores from different metrics might be considered for direct comparison.

Each metric usually opts for a different optimum number of topics. From initial experience it may
be assumed that logratio, pmi and nmpi usually opt for smaller numbers, whereas the other metrics
rather tend to propose higher numbers.

Implemented metrics:

• "mean_logratio"
The logarithmic ratio is calculated as

6 coherence

log(smooth + tcm[x,y]) - log(tcm[y,y]),
where x and y are term index pairs from a "preceding" term index combination.
Given the indices c(1,2,3), combinations are list(c(2,1), c(3,1), c(3,2)).

The tcm should represent the boolean term co-occurrence (internally the actual counts are
used) in the original documents and, therefore, is an intrinsic metric in the standard use case.

This metric is similar to the UMass metric, however, with a smaller smoothing constant by
default and using the mean for aggregation instead of the sum.

• "mean_pmi"
The pointwise mutual information is calculated as
log2((tcm[x,y]/n_doc_tcm) + smooth) - log2(tcm[x,x]/n_doc_tcm) - log2(tcm[y,y]/n_doc_tcm),
where x and y are term index pairs from an arbitrary term index combination
that subsets the lower or upper triangle of tcm, e.g. "preceding".

The tcm should represent term co-occurrences within a boolean sliding window of size 10
(internally probabilities are used) in an external reference corpus and, therefore, is an extrin-
sic metric in the standard use case.

This metric is similar to the UCI metric, however, with a smaller smoothing constant by de-
fault and using the mean for aggregation instead of the sum.

• "mean_npmi"
Similar (in terms of all parameter settings, etc.) to "mean_pmi" metric but using the normal-
ized pmi instead, which is calculated as
(log2((tcm[x,y]/n_doc_tcm) + smooth) - log2(tcm[x,x]/n_doc_tcm) - log2(tcm[y,y]/n_doc_tcm))
/ -log2((tcm[x,y]/n_doc_tcm) + smooth),

This metric may perform better than the simpler pmi metric.

• "mean_difference"
The difference is calculated as
tcm[x,y]/tcm[x,x] - (tcm[y,y]/n_tcm_windows),
where x and y are term index pairs from a "preceding" term index combination.
Given the indices c(1,2,3), combinations are list(c(1,2), c(1,3), c(2,3)).

The tcm should represent the boolean term co-occurrence (internally probabilities are used) in
the original documents and, therefore, is an intrinsic metric in the standard use case.

• "mean_npmi_cosim"
First, the npmi of an individual top word with each of the top words is calculated as in
"mean_npmi".
This result in a vector of npmi values for each top word.
On this basis, the cosine similarity between each pair of vectors is calculated.

The tcm should represent term co-occurrences within a boolean sliding window of size 5
(internally probabilities are used) in an external reference corpus and, therefore, is an extrin-
sic metric in the standard use case.

coherence 7

• "mean_npmi_cosim2"
First, a vector of npmi values for each top word is calculated as in "mean_npmi_cosim".
On this basis, the cosine similarity between each vector and the sum of all vectors is calculated
(instead of the similarity between each pair).

The tcm should represent term co-occurrences within a boolean sliding window of size 110
(internally probabilities are used) in an external reference corpus and, therefore, is an extrinsic
metric in the standard use case.

Value

A numeric matrix with the coherence scores of the specified metrics per topic.

References

Below mentioned paper is the main theoretical basis for this code.
Currently only a selection of metrics stated in this paper is included in this R implementation.
Authors: Roeder, Michael; Both, Andreas; Hinneburg, Alexander (2015)
Title: Exploring the Space of Topic Coherence Measures.
In: Xueqi Cheng, Hang Li, Evgeniy Gabrilovich und Jie Tang (Eds.):
Proceedings of the Eighth ACM International Conference on Web Search and Data Mining - WSDM
’15.
the Eighth ACM International Conference. Shanghai, China, 02.02.2015 - 06.02.2015.
New York, USA: ACM Press, p. 399-408.
https://dl.acm.org/citation.cfm?id=2685324
This paper has been implemented by above listed authors as the Java program "palmetto".
See https://github.com/dice-group/Palmetto or http://aksw.org/Projects/Palmetto.html.

Examples

library(data.table)
library(text2vec)
library(Matrix)
data("movie_review")
N = 500
tokens = word_tokenizer(tolower(movie_review$review[1:N]))
it = itoken(tokens, progressbar = FALSE)
v = create_vocabulary(it)
v = prune_vocabulary(v, term_count_min = 5, doc_proportion_max = 0.2)
dtm = create_dtm(it, vocab_vectorizer(v))

n_topics = 10
lda_model = LDA$new(n_topics)
fitted = lda_model$fit_transform(dtm, n_iter = 20)
tw = lda_model$get_top_words(n = 10, lambda = 1)

for demonstration purposes create intrinsic TCM from original documents
scores might not make sense for metrics that are designed for extrinsic TCM
tcm = crossprod(sign(dtm))

8 Collocations

check coherence
logger = lgr::get_logger('text2vec')
logger$set_threshold('debug')
res = coherence(tw, tcm, n_doc_tcm = N)
res

example how to create TCM for extrinsic measures from an external corpus
external_reference_corpus = tolower(movie_review$review[501:1000])
tokens_ext = word_tokenizer(external_reference_corpus)
iterator_ext = itoken(tokens_ext, progressbar = FALSE)
v_ext = create_vocabulary(iterator_ext)
for reasons of efficiency vocabulary may be reduced to the terms matched in the original corpus
v_ext= v_ext[v_ext$term %in% v$term,]
external vocabulary may be pruned depending on the use case
v_ext = prune_vocabulary(v_ext, term_count_min = 5, doc_proportion_max = 0.2)
vectorizer_ext = vocab_vectorizer(v_ext)

for demonstration purposes a boolean co-occurrence within sliding window of size 10 is used
10 represents sentence co-occurrence, a size of 110 would, e.g., be paragraph co-occurrence
window_size = 5

tcm_ext = create_tcm(iterator_ext, vectorizer_ext
,skip_grams_window = window_size
,weights = rep(1, window_size)
,binary_cooccurence = TRUE

)
#add marginal probabilities in diagonal (by default only upper triangle of tcm is created)
diag(tcm_ext) = attributes(tcm_ext)$word_count

get number of sliding windows that serve as virtual documents, i.e. n_doc_tcm argument
n_skip_gram_windows = sum(sapply(tokens, function(x) {length(x)}))

Collocations Collocations model.

Description

Creates Collocations model which can be used for phrase extraction.

Usage

Collocations

Format

R6Class object.

Collocations 9

Fields

collocation_stat data.table with collocations(phrases) statistics. Useful for filtering non-
relevant phrases

Usage

For usage details see Methods, Arguments and Examples sections.

model = Collocations$new(vocabulary = NULL, collocation_count_min = 50, pmi_min = 5, gensim_min = 0,
lfmd_min = -Inf, llr_min = 0, sep = "_")

model$partial_fit(it, ...)
model$fit(it, n_iter = 1, ...)
model$transform(it)
model$prune(pmi_min = 5, gensim_min = 0, lfmd_min = -Inf, llr_min = 0)
model$collocation_stat

Methods

$new(vocabulary = NULL, collocation_count_min = 50, sep = "_") Constructor for Colloca-
tions model. For description of arguments see Arguments section.

$fit(it, n_iter = 1, ...) fit Collocations model to input iterator it. Iterating over input it-
erator it n_iter times, so hierarchically can learn multi-word phrases. Invisibly returns
collocation_stat.

$partial_fit(it, ...) iterates once over data and learns collocations. Invisibly returns collocation_stat.
Workhorse for $fit()

$transform(it) transforms input iterator using learned collocations model. Result of the transfor-
mation is new itoken or itoken_parallel iterator which will produce tokens with phrases
collapsed into single token.

$prune(pmi_min = 5, gensim_min = 0, lfmd_min = -Inf, llr_min = 0) filter out non-relevant phrases
with low score. User can do it directly by modifying collocation_stat object.

Arguments

model A Collocation model object

n_iter number of iteration over data

pmi_min, gensim_min, lfmd_min, llr_min minimal scores of the corresponding statistics in or-
der to collapse tokens into collocation:

• pointwise mutual information
• "gensim" scores - https://radimrehurek.com/gensim/models/phrases.html adapted

from word2vec paper
• log-frequency biased mutual dependency
• Dunning’s logarithm of the ratio between the likelihoods of the hypotheses of dependence

and independence

See https://aclanthology.org/I05-1050/ for details. Also see data in model$collocation_stat
for better intuition

it An input itoken or itoken_parallel iterator

https://radimrehurek.com/gensim/models/phrases.html
https://aclanthology.org/I05-1050/

10 combine_vocabularies

vocabulary text2vec_vocabulary - if provided will look for collocations consisted of only from
vocabulary

Examples

library(text2vec)
data("movie_review")

preprocessor = function(x) {
gsub("[^[:alnum:]\\s]", replacement = " ", tolower(x))

}
sample_ind = 1:100
tokens = word_tokenizer(preprocessor(movie_review$review[sample_ind]))
it = itoken(tokens, ids = movie_review$id[sample_ind])
system.time(v <- create_vocabulary(it))
v = prune_vocabulary(v, term_count_min = 5)

model = Collocations$new(collocation_count_min = 5, pmi_min = 5)
model$fit(it, n_iter = 2)
model$collocation_stat

it2 = model$transform(it)
v2 = create_vocabulary(it2)
v2 = prune_vocabulary(v2, term_count_min = 5)
check what phrases model has learned
setdiff(v2$term, v$term)
[1] "main_character" "jeroen_krabb" "boogey_man" "in_order"
[5] "couldn_t" "much_more" "my_favorite" "worst_film"
[9] "have_seen" "characters_are" "i_mean" "better_than"
[13] "don_t_care" "more_than" "look_at" "they_re"
[17] "each_other" "must_be" "sexual_scenes" "have_been"
[21] "there_are_some" "you_re" "would_have" "i_loved"
[25] "special_effects" "hit_man" "those_who" "people_who"
[29] "i_am" "there_are" "could_have_been" "we_re"
[33] "so_bad" "should_be" "at_least" "can_t"
[37] "i_thought" "isn_t" "i_ve" "if_you"
[41] "didn_t" "doesn_t" "i_m" "don_t"

and same way we can create document-term matrix which contains
words and phrases!
dtm = create_dtm(it2, vocab_vectorizer(v2))
check that dtm contains phrases
which(colnames(dtm) == "jeroen_krabb")

combine_vocabularies Combines multiple vocabularies into one

Description

Combines multiple vocabularies into one

create_dtm 11

Usage

combine_vocabularies(..., combine_stopwords = function(x)
unique(unlist(lapply(x, attr, which = "stopwords"), use.names = FALSE)),
combine_ngram = function(x) attr(x[[1]], "ngram"),
combine_sep_ngram = function(x) attr(x[[1]], "sep_ngram"))

Arguments

... vocabulary objects created with create_vocabulary.

combine_stopwords

function to combine stopwords from input vocabularies. By default we take a
union of all stopwords.

combine_ngram function to combine lower and upper boundary for n-grams from input vocabu-
laries. Usually these values should be the same, so we take this parameter from
first vocabulary.

combine_sep_ngram

function to combine stopwords from input vocabularies. Usually these values
should be the same, so we take this parameter from first vocabulary.

Value

text2vec_vocabulary see details in create_vocabulary.

create_dtm Document-term matrix construction

Description

This is a high-level function for creating a document-term matrix.

Usage

create_dtm(it, vectorizer, type = c("dgCMatrix", "dgTMatrix",
"RsparseMatrix"), ...)

S3 method for class 'itoken'
create_dtm(it, vectorizer, type = c("dgCMatrix",
"dgTMatrix", "RsparseMatrix"), ...)

S3 method for class 'itoken_parallel'
create_dtm(it, vectorizer,
type = c("dgCMatrix", "dgTMatrix", "RsparseMatrix"), ...)

12 create_dtm

Arguments

it itoken iterator or list of itoken iterators.

vectorizer function vectorizer function; see vectorizers.

type character, one of c("dgCMatrix", "dgTMatrix").

... placeholder for additional arguments (not used at the moment). over it.

Details

If a parallel backend is registered and first argument is a list of itoken, iterators, function will
construct the DTM in multiple threads. User should keep in mind that he or she should split the
data itself and provide a list of itoken iterators. Each element of it will be handled in separate
thread and combined at the end of processing.

Value

A document-term matrix

See Also

itoken vectorizers

Examples

Not run:
data("movie_review")
N = 1000
it = itoken(movie_review$review[1:N], preprocess_function = tolower,

tokenizer = word_tokenizer)
v = create_vocabulary(it)
#remove very common and uncommon words
pruned_vocab = prune_vocabulary(v, term_count_min = 10,
doc_proportion_max = 0.5, doc_proportion_min = 0.001)

vectorizer = vocab_vectorizer(v)
it = itoken(movie_review$review[1:N], preprocess_function = tolower,

tokenizer = word_tokenizer)
dtm = create_dtm(it, vectorizer)
get tf-idf matrix from bag-of-words matrix
dtm_tfidf = transformer_tfidf(dtm)

Example of parallel mode
it = token_parallel(movie_review$review[1:N], tolower, word_tokenizer, movie_review$id[1:N])
vectorizer = hash_vectorizer()
dtm = create_dtm(it, vectorizer, type = 'dgTMatrix')

End(Not run)

create_tcm 13

create_tcm Term-co-occurence matrix construction

Description

This is a function for constructing a term-co-occurrence matrix(TCM). TCM matrix usually used
with GloVe word embedding model.

Usage

create_tcm(it, vectorizer, skip_grams_window = 5L,
skip_grams_window_context = c("symmetric", "right", "left"),
weights = 1/seq_len(skip_grams_window), binary_cooccurence = FALSE,
...)

S3 method for class 'itoken'
create_tcm(it, vectorizer, skip_grams_window = 5L,
skip_grams_window_context = c("symmetric", "right", "left"),
weights = 1/seq_len(skip_grams_window), binary_cooccurence = FALSE,
...)

S3 method for class 'itoken_parallel'
create_tcm(it, vectorizer,
skip_grams_window = 5L, skip_grams_window_context = c("symmetric",
"right", "left"), weights = 1/seq_len(skip_grams_window),
binary_cooccurence = FALSE, ...)

Arguments

it list of iterators over tokens from itoken. Each element is a list of tokens, that
is, tokenized and normalized strings.

vectorizer function vectorizer function. See vectorizers.
skip_grams_window

integer window for term-co-occurence matrix construction. skip_grams_window
should be > 0 if you plan to use vectorizer in create_tcm function. Value of
0L means to not construct the TCM.

skip_grams_window_context

one of c("symmetric", "right", "left") - which context words to use when
count co-occurence statistics.

weights weights for context/distant words during co-occurence statistics calculation. By
default we are setting weight = 1 / distance_from_current_word. Should
have length equal to skip_grams_window.

binary_cooccurence

FALSE by default. If set to TRUE then function only counts first appearence of
the context word and remaining occurrence are ignored. Useful when creating
TCM for evaluation of coherence of topic models. "symmetric" by default -
take into account skip_grams_window left and right.

14 create_vocabulary

... placeholder for additional arguments (not used at the moment). it.

Details

If a parallel backend is registered, it will construct the TCM in multiple threads. The user should
keep in mind that he/she should split data and provide a list of itoken iterators. Each element of it
will be handled in a separate thread combined at the end of processing.

Value

dgTMatrix TCM matrix

See Also

itoken create_dtm

Examples

Not run:
data("movie_review")

single thread

tokens = word_tokenizer(tolower(movie_review$review))
it = itoken(tokens)
v = create_vocabulary(jobs)
vectorizer = vocab_vectorizer(v)
tcm = create_tcm(itoken(tokens), vectorizer, skip_grams_window = 3L)

parallel version

set to number of cores on your machine
it = token_parallel(movie_review$review[1:N], tolower, word_tokenizer, movie_review$id[1:N])
v = create_vocabulary(jobs)
vectorizer = vocab_vectorizer(v)
dtm = create_dtm(it, vectorizer, type = 'dgTMatrix')
tcm = create_tcm(jobs, vectorizer, skip_grams_window = 3L, skip_grams_window_context = "symmetric")

End(Not run)

create_vocabulary Creates a vocabulary of unique terms

Description

This function collects unique terms and corresponding statistics. See the below for details.

create_vocabulary 15

Usage

create_vocabulary(it, ngram = c(ngram_min = 1L, ngram_max = 1L),
stopwords = character(0), sep_ngram = "_", window_size = 0L, ...)

vocabulary(it, ngram = c(ngram_min = 1L, ngram_max = 1L),
stopwords = character(0), sep_ngram = "_", window_size = 0L, ...)

S3 method for class 'character'
create_vocabulary(it, ngram = c(ngram_min = 1L,
ngram_max = 1L), stopwords = character(0), sep_ngram = "_",
window_size = 0L, ...)

S3 method for class 'itoken'
create_vocabulary(it, ngram = c(ngram_min = 1L,
ngram_max = 1L), stopwords = character(0), sep_ngram = "_",
window_size = 0L, ...)

S3 method for class 'itoken_parallel'
create_vocabulary(it, ngram = c(ngram_min = 1L,
ngram_max = 1L), stopwords = character(0), sep_ngram = "_",
window_size = 0L, ...)

Arguments

it iterator over a list of character vectors, which are the documents from which
the user wants to construct a vocabulary. See itoken. Alternatively, a character
vector of user-defined vocabulary terms (which will be used "as is").

ngram integer vector. The lower and upper boundary of the range of n-values for
different n-grams to be extracted. All values of n such that ngram_min <= n <=
ngram_max will be used.

stopwords character vector of stopwords to filter out. NOTE that stopwords will be used
"as is". This means that if preprocessing function in itoken does some text modi-
fication (like stemming), then this preprocessing need to be applied to stopwords
before passing them here. See https://github.com/dselivanov/text2vec/
issues/228 for example.

sep_ngram character a character string to concatenate words in ngrams

window_size integer (0 by default). If window_size > 0 than vocabulary will be created
from pseudo-documents which are obtained by virtually splitting each docu-
ments into chunks of the length window_size by going with sliding window
through them. This is useful for creating special statistics which are used for
coherence estimation in topic models.

... placeholder for additional arguments (not used at the moment).

Value

text2vec_vocabulary object, which is actually a data.frame with following columns:

https://github.com/dselivanov/text2vec/issues/228
https://github.com/dselivanov/text2vec/issues/228

16 distances

term character vector of unique terms

term_count integer vector of term counts across all documents

doc_count integer vector of document counts that contain corresponding term

Also it contains metainformation in attributes: ngram: integer vector, the lower and upper bound-
ary of the range of n-gram-values. document_count: integer number of documents vocabu-
lary was built. stopwords: character vector of stopwords sep_ngram: character separator for
ngrams

Methods (by class)

• character: creates text2vec_vocabulary from predefined character vector. Terms will be
inserted as is, without any checks (ngrams number, ngram delimiters, etc.).

• itoken: collects unique terms and corresponding statistics from object.

• itoken_parallel: collects unique terms and corresponding statistics from iterator.

Examples

data("movie_review")
txt = movie_review[['review']][1:100]
it = itoken(txt, tolower, word_tokenizer, n_chunks = 10)
vocab = create_vocabulary(it)
pruned_vocab = prune_vocabulary(vocab, term_count_min = 10, doc_proportion_max = 0.8,
doc_proportion_min = 0.001, vocab_term_max = 20000)

distances Pairwise Distance Matrix Computation

Description

dist2 calculates pairwise distances/similarities between the rows of two data matrices. Note that
some methods work only on sparse matrices and others work only on dense matrices.

pdist2 calculates "parallel" distances between the rows of two data matrices.

Usage

dist2(x, y = NULL, method = c("cosine", "euclidean", "jaccard"),
norm = c("l2", "l1", "none"))

pdist2(x, y, method = c("cosine", "euclidean", "jaccard"),
norm = c("l2", "l1", "none"))

GloVe 17

Arguments

x first matrix.

y second matrix. For dist2 y = NULL set by default. This means that we will
assume y = x and calculate distances/similarities between all rows of the x.

method usually character or instance of tet2vec_distance class. The distances/similarity
measure to be used. One of c("cosine", "euclidean", "jaccard") or RWMD.
RWMD works only on bag-of-words matrices. In case of "cosine" distance max
distance will be 1 - (-1) = 2

norm character = c("l2", "l1", "none") - how to scale input matrices. If they
already scaled - use "none"

Details

Computes the distance matrix computed by using the specified method. Similar to dist function, but
works with two matrices.

pdist2 takes two matrices and return a single vector. giving the ‘parallel’ distances of the vectors.

Value

dist2 returns matrix of distances/similarities between each row of matrix x and each row of matrix
y.

pdist2 returns vector of "parallel" distances between rows of x and y.

GloVe re-export rsparse::GloVe

Description

re-export rsparse::GloVe

Usage

GlobalVectors

Format

An object of class R6ClassGenerator of length 24.

18 ifiles

ifiles Creates iterator over text files from the disk

Description

The result of this function usually used in an itoken function.

Usage

ifiles(file_paths, reader = readLines)

idir(path, reader = readLines)

ifiles_parallel(file_paths, reader = readLines, ...)

Arguments

file_paths character paths of input files

reader function which will perform reading of text files from disk, which should take
a path as its first argument. reader() function should return named character
vector: elements of vector = documents, names of the elements = document
ids which will be used in DTM construction. If user doesn’t provide named
character vector, document ids will be generated as file_name + line_number
(assuming that each line is a document).

path character path of directory. All files in the directory will be read.

... other arguments (not used at the moment)

See Also

itoken

Examples

Not run:
current_dir_files = list.files(path = ".", full.names = TRUE)
files_iterator = ifiles(current_dir_files)
parallel_files_iterator = ifiles_parallel(current_dir_files, n_chunks = 4)
it = itoken_parallel(parallel_files_iterator)
dtm = create_dtm(it, hash_vectorizer(2**16), type = 'dgTMatrix')

End(Not run)
dir_files_iterator = idir(path = ".")

itoken 19

itoken Iterators (and parallel iterators) over input objects

Description

This family of function creates iterators over input objects in order to create vocabularies, or DTM
and TCM matrices. iterators usually used in following functions : create_vocabulary, create_dtm,
vectorizers, create_tcm. See them for details.

Usage

itoken(iterable, ...)

S3 method for class 'character'
itoken(iterable, preprocessor = identity,
tokenizer = space_tokenizer, n_chunks = 10,
progressbar = interactive(), ids = NULL, ...)

S3 method for class 'list'
itoken(iterable, n_chunks = 10,
progressbar = interactive(), ids = names(iterable), ...)

S3 method for class 'iterator'
itoken(iterable, preprocessor = identity,
tokenizer = space_tokenizer, progressbar = interactive(), ...)

itoken_parallel(iterable, ...)

S3 method for class 'character'
itoken_parallel(iterable, preprocessor = identity,
tokenizer = space_tokenizer, n_chunks = 10, ids = NULL, ...)

S3 method for class 'iterator'
itoken_parallel(iterable, preprocessor = identity,
tokenizer = space_tokenizer, n_chunks = 1L, ...)

S3 method for class 'list'
itoken_parallel(iterable, n_chunks = 10, ids = NULL,
...)

Arguments

iterable an object from which to generate an iterator

... arguments passed to other methods

preprocessor function which takes chunk of character vectors and does all pre-processing.
Usually preprocessor should return a character vector of preprocessed/cleaned
documents. See "Details" section.

20 itoken

tokenizer function which takes a character vector from preprocessor, split it into to-
kens and returns a list of character vectors. If you need to perform stemming
- call stemmer inside tokenizer. See examples section.

n_chunks integer, the number of pieces that object should be divided into. Then each
chunk is processed independently (and in case itoken_parallel in parallel if
some parallel backend is registered). Usually there is tradeoff: larger num-
ber of chunks means lower memory footprint, but slower (if preprocessor,
tokenizer functions are efficiently vectorized). And small number of chunks
means larger memory footprint but faster execution (again if user supplied preprocessor,
tokenizer functions are efficiently vectorized).

progressbar logical indicates whether to show progress bar.

ids vector of document ids. If ids is not provided, names(iterable) will be used.
If names(iterable) == NULL, incremental ids will be assigned.

Details

S3 methods for creating an itoken iterator from list of tokens

• list: all elements of the input list should be character vectors containing tokens

• character: raw text source: the user must provide a tokenizer function

• ifiles: from files, a user must provide a function to read in the file (to ifiles) and a function
to tokenize it (to itoken)

• idir: from a directory, the user must provide a function to read in the files (to idir) and a
function to tokenize it (to itoken)

• ifiles_parallel: from files in parallel

See Also

ifiles, idir, create_vocabulary, create_dtm, vectorizers, create_tcm

Examples

data("movie_review")
txt = movie_review$review[1:100]
ids = movie_review$id[1:100]
it = itoken(txt, tolower, word_tokenizer, n_chunks = 10)
it = itoken(txt, tolower, word_tokenizer, n_chunks = 10, ids = ids)
Example of stemming tokenizer
stem_tokenizer =function(x) {
lapply(word_tokenizer(x), SnowballC::wordStem, language="en")
}
it = itoken_parallel(movie_review$review[1:100], n_chunks = 4)
system.time(dtm <- create_dtm(it, hash_vectorizer(2**16), type = 'dgTMatrix'))

jsPCA_robust 21

jsPCA_robust (numerically robust) Dimension reduction via Jensen-Shannon Diver-
gence & Principal Components

Description

This function is largely a copy of the repsective function in https://github.com/cpsievert/LDAvis/blob/master/R/createJSON.R,
however, with a fix to avoid log(0) proposed by Maren-Eckhoff in https://github.com/cpsievert/LDAvis/issues/56

Usage

jsPCA_robust(phi)

Arguments

phi matrix, with each row containing the distribution over terms for a topic, with as
many rows as there are topics in the model, and as many columns as there are
terms in the vocabulary.

LatentDirichletAllocation

Creates Latent Dirichlet Allocation model.

Description

Creates Latent Dirichlet Allocation model. At the moment only ’WarpLDA’ is implemented. WarpLDA,
an LDA sampler which achieves both the best O(1) time complexity per token and the best O(K)
scope of random access. Our empirical results in a wide range of testing conditions demon-
strate that WarpLDA is consistently 5-15x faster than the state-of-the-art Metropolis-Hastings based
LightLDA, and is comparable or faster than the sparsity aware F+LDA.

Usage

LatentDirichletAllocation

LDA

Format

R6Class object.

Fields

topic_word_distribution distribution of words for each topic. Available after model fitting with
model$fit_transform() method.

components unnormalized word counts for each topic-word entry. Available after model fitting
with model$fit_transform() method.

22 LatentDirichletAllocation

Usage

For usage details see Methods, Arguments and Examples sections.

lda = LDA$new(n_topics = 10L, doc_topic_prior = 50 / n_topics, topic_word_prior = 1 / n_topics)
lda$fit_transform(x, n_iter = 1000, convergence_tol = 1e-3, n_check_convergence = 10, progressbar = interactive())
lda$transform(x, n_iter = 1000, convergence_tol = 1e-3, n_check_convergence = 5, progressbar = FALSE)
lda$get_top_words(n = 10, topic_number = 1L:private$n_topics, lambda = 1)

Methods

$new(n_topics, doc_topic_prior = 50 / n_topics, # alpha topic_word_prior = 1 / n_topics, # beta method = "WarpLDA")
Constructor for LDA model. For description of arguments see Arguments section.

$fit_transform(x, n_iter, convergence_tol = -1, n_check_convergence = 0, progressbar = interactive())
fit LDA model to input matrix x and transforms input documents to topic space. Result is a
matrix where each row represents corresponding document. Values in a row form distribution
over topics.

$transform(x, n_iter, convergence_tol = -1, n_check_convergence = 0, progressbar = FALSE)
transforms new documents into topic space. Result is a matrix where each row is a distribution
of a documents over latent topic space.

$get_top_words(n = 10, topic_number = 1L:private$n_topics, lambda = 1) returns "top words"
for a given topic (or several topics). Words for each topic can be sorted by probability of
chance to observe word in a given topic (lambda = 1) and by "relevance" which also takes into
account frequency of word in corpus (lambda < 1). From our experience in most cases set-
ting 0.2 < lambda < 0.4 works well. See http://nlp.stanford.edu/events/illvi2014/
papers/sievert-illvi2014.pdf for details.

$plot(lambda.step = 0.1, reorder.topics = FALSE, ...) plot LDA model using https://cran.
r-project.org/package=LDAvis package. ... will be passed to LDAvis::createJSON and
LDAvis::serVis functions

Arguments

lda A LDA object

x An input document-term matrix (should have column names = terms). CSR RsparseMatrix
used internally, other formats will be tried to convert to CSR via as() function call.

n_topics integer desired number of latent topics. Also knows as K

doc_topic_prior numeric prior for document-topic multinomial distribution. Also knows as alpha

topic_word_prior numeric prior for topic-word multinomial distribution. Also knows as eta

n_iter integer number of sampling iterations while fitting model

n_iter_inference integer number iterations used when sampling from converged model for infer-
ence. In other words number of samples from distribution after burn-in.

n_check_convergence defines how often calculate score to check convergence

convergence_tol numeric = -1 defines early stopping strategy. We stop fitting when one of two
following conditions will be satisfied: (a) we have used all iterations, or (b) score_previous_check
/ score_current < 1 + convergence_tol

http://nlp.stanford.edu/events/illvi2014/papers/sievert-illvi2014.pdf
http://nlp.stanford.edu/events/illvi2014/papers/sievert-illvi2014.pdf
https://cran.r-project.org/package=LDAvis
https://cran.r-project.org/package=LDAvis

LatentSemanticAnalysis 23

Examples

library(text2vec)
data("movie_review")
N = 500
tokens = word_tokenizer(tolower(movie_review$review[1:N]))
it = itoken(tokens, ids = movie_review$id[1:N])
v = create_vocabulary(it)
v = prune_vocabulary(v, term_count_min = 5, doc_proportion_max = 0.2)
dtm = create_dtm(it, vocab_vectorizer(v))
lda_model = LDA$new(n_topics = 10)
doc_topic_distr = lda_model$fit_transform(dtm, n_iter = 20)
run LDAvis visualisation if needed (make sure LDAvis package installed)
lda_model$plot()

LatentSemanticAnalysis

Latent Semantic Analysis model

Description

Creates LSA(Latent semantic analysis) model. See https://en.wikipedia.org/wiki/Latent_
semantic_analysis for details.

Usage

LatentSemanticAnalysis

LSA

Format

R6Class object.

Usage

For usage details see Methods, Arguments and Examples sections.

lsa = LatentSemanticAnalysis$new(n_topics)
lsa$fit_transform(x, ...)
lsa$transform(x, ...)
lsa$components

Methods

$new(n_topics) create LSA model with n_topics latent topics

$fit_transform(x, ...) fit model to an input sparse matrix (preferably in dgCMatrix format)
and then transform x to latent space

$transform(x, ...) transform new data x to latent space

https://en.wikipedia.org/wiki/Latent_semantic_analysis
https://en.wikipedia.org/wiki/Latent_semantic_analysis

24 movie_review

Arguments

lsa A LSA object.

x An input document-term matrix. Preferably in dgCMatrix format

n_topics integer desired number of latent topics.

... Arguments to internal functions. Notably useful for fit_transform() - these arguments will
be passed to rsparse::soft_svd

Examples

data("movie_review")
N = 100
tokens = word_tokenizer(tolower(movie_review$review[1:N]))
dtm = create_dtm(itoken(tokens), hash_vectorizer(2**10))
n_topics = 5
lsa_1 = LatentSemanticAnalysis$new(n_topics)
d1 = lsa_1$fit_transform(dtm)
the same, but wrapped with S3 methods
d2 = fit_transform(dtm, lsa_1)

movie_review IMDB movie reviews

Description

The labeled dataset consists of 5000 IMDB movie reviews, specially selected for sentiment analysis.
The sentiment of the reviews is binary, meaning an IMDB rating < 5 results in a sentiment score
of 0, and a rating >=7 has a sentiment score of 1. No individual movie has more than 30 reviews.
Important note: we removed non ASCII symbols from the original dataset to satisfy CRAN policy.

Usage

data("movie_review")

Format

A data frame with 5000 rows and 3 variables:

id Unique ID of each review

sentiment Sentiment of the review; 1 for positive reviews and 0 for negative reviews

review Text of the review (UTF-8)

Source

http://ai.stanford.edu/~amaas/data/sentiment/

http://ai.stanford.edu/~amaas/data/sentiment/

normalize 25

normalize Matrix normalization

Description

normalize matrix rows using given norm

Usage

normalize(m, norm = c("l1", "l2", "none"))

Arguments

m matrix (sparse or dense).

norm character the method used to normalize term vectors

Value

normalized matrix

See Also

create_dtm

perplexity Perplexity of a topic model

Description

Given document-term matrix, topic-word distribution, document-topic distribution calculates per-
plexity

Usage

perplexity(X, topic_word_distribution, doc_topic_distribution)

Arguments

X sparse document-term matrix which contains terms counts. Internally Matrix::RsparseMatrix
is used. If !inherits(X, 'RsparseMatrix') function will try to coerce X to
RsparseMatrix via as() call.

topic_word_distribution

dense matrix for topic-word distribution. Number of rows = n_topics, number
of columns = vocabulary_size. Sum of elements in each row should be equal
to 1 - each row is a distribution of words over topic.

26 prepare_analogy_questions

doc_topic_distribution

dense matrix for document-topic distribution. Number of rows = n_documents,
number of columns = n_topics. Sum of elements in each row should be equal
to 1 - each row is a distribution of topics over document.

Examples

library(text2vec)
data("movie_review")
n_iter = 10
train_ind = 1:200
ids = movie_review$id[train_ind]
txt = tolower(movie_review[['review']][train_ind])
names(txt) = ids
tokens = word_tokenizer(txt)
it = itoken(tokens, progressbar = FALSE, ids = ids)
vocab = create_vocabulary(it)
vocab = prune_vocabulary(vocab, term_count_min = 5, doc_proportion_min = 0.02)
dtm = create_dtm(it, vectorizer = vocab_vectorizer(vocab))
n_topic = 10
model = LDA$new(n_topic, doc_topic_prior = 0.1, topic_word_prior = 0.01)
doc_topic_distr =

model$fit_transform(dtm, n_iter = n_iter, n_check_convergence = 1,
convergence_tol = -1, progressbar = FALSE)

topic_word_distr_10 = model$topic_word_distribution
perplexity(dtm, topic_word_distr_10, doc_topic_distr)

prepare_analogy_questions

Prepares list of analogy questions

Description

This function prepares a list of questions from a questions-words.txt format. For full examples
see GloVe.

Usage

prepare_analogy_questions(questions_file_path, vocab_terms)

Arguments

questions_file_path

character path to questions file.
vocab_terms character words which we have in the vocabulary and word embeddings ma-

trix.

See Also

check_analogy_accuracy, GloVe

prune_vocabulary 27

prune_vocabulary Prune vocabulary

Description

This function filters the input vocabulary and throws out very frequent and very infrequent terms.
See examples in for the vocabulary function. The parameter vocab_term_max can also be used to
limit the absolute size of the vocabulary to only the most frequently used terms.

Usage

prune_vocabulary(vocabulary, term_count_min = 1L, term_count_max = Inf,
doc_proportion_min = 0, doc_proportion_max = 1, doc_count_min = 1L,
doc_count_max = Inf, vocab_term_max = Inf)

Arguments

vocabulary a vocabulary from the vocabulary function.

term_count_min minimum number of occurences over all documents.

term_count_max maximum number of occurences over all documents.
doc_proportion_min

minimum proportion of documents which should contain term.

doc_proportion_max

maximum proportion of documents which should contain term.

doc_count_min term will be kept number of documents contain this term is larger than this value

doc_count_max term will be kept number of documents contain this term is smaller than this
value

vocab_term_max maximum number of terms in vocabulary.

See Also

vocabulary

RelaxedWordMoversDistance

Creates Relaxed Word Movers Distance (RWMD) model

28 RelaxedWordMoversDistance

Description

RWMD model can be used to query the "relaxed word movers distance" from a document to a
collection of documents. RWMD tries to measure distance between query document and collection
of documents by calculating how hard is to transform words from query document into words from
each document in collection. For more detail see following article: http://mkusner.github.io/
publications/WMD.pdf. However in contrast to the article above we calculate "easiness" of the
convertion of one word into another by using cosine similarity (but not a euclidean distance). Also
here in text2vec we’ve implemented effiient RWMD using the tricks from the Linear-Complexity
Relaxed Word Mover’s Distance with GPU Acceleration article.

Usage

RelaxedWordMoversDistance

RWMD

Format

R6Class object.

Usage

For usage details see Methods, Arguments and Examples sections.

rwmd = RelaxedWordMoversDistance$new(x, embeddings)
rwmd$sim2(x)

Methods

$new(x, embeddings) Constructor for RWMD model. x - docuent-term matrix which represents
collection of documents against which you want to perform queries. embeddings - matrix
of word embeddings which will be used to calculate similarities between words (each row
represents a word vector).

$sim(x) calculates similarity from a collection of documents to collection query documents x. x
here is a document-term matrix which represents the set of query documents

$dist(x) calculates distance from a collection of documents to collection query documents x x
here is a document-term matrix which represents the set of query documents

Examples

Not run:
library(text2vec)
library(rsparse)
data("movie_review")
tokens = word_tokenizer(tolower(movie_review$review))
v = create_vocabulary(itoken(tokens))
v = prune_vocabulary(v, term_count_min = 5, doc_proportion_max = 0.5)
it = itoken(tokens)
vectorizer = vocab_vectorizer(v)

http://mkusner.github.io/publications/WMD.pdf
http://mkusner.github.io/publications/WMD.pdf
https://arxiv.org/abs/1711.07227
https://arxiv.org/abs/1711.07227

similarities 29

dtm = create_dtm(it, vectorizer)
tcm = create_tcm(it, vectorizer, skip_grams_window = 5)
glove_model = GloVe$new(rank = 50, x_max = 10)
wv = glove_model$fit_transform(tcm, n_iter = 5)
get average of main and context vectors as proposed in GloVe paper
wv = wv + t(glove_model$components)
rwmd_model = RelaxedWordMoversDistance$new(dtm, wv)
rwms = rwmd_model$sim2(dtm[1:10,])
head(sort(rwms[1,], decreasing = T))

End(Not run)

similarities Pairwise Similarity Matrix Computation

Description

sim2 calculates pairwise similarities between the rows of two data matrices. Note that some meth-
ods work only on sparse matrices and others work only on dense matrices.

psim2 calculates "parallel" similarities between the rows of two data matrices.

Usage

sim2(x, y = NULL, method = c("cosine", "jaccard"), norm = c("l2",
"none"))

psim2(x, y, method = c("cosine", "jaccard"), norm = c("l2", "none"))

Arguments

x first matrix.

y second matrix. For sim2 y = NULL set by default. This means that we will as-
sume y = x and calculate similarities between all rows of the x.

method character, the similarity measure to be used. One of c("cosine", "jaccard").

norm character = c("l2", "none") - how to scale input matrices. If they already
scaled - use "none"

Details

Computes the similarity matrix using given method.

psim2 takes two matrices and return a single vector. giving the ‘parallel’ similarities of the vectors.

Value

sim2 returns matrix of similarities between each row of matrix x and each row of matrix y.

psim2 returns vector of "parallel" similarities between rows of x and y.

30 text2vec

split_into Split a vector for parallel processing

Description

This function splits a vector into n parts of roughly equal size. These splits can be used for parallel
processing. In general, n should be equal to the number of jobs you want to run, which should be
the number of cores you want to use.

Usage

split_into(vec, n)

Arguments

vec input vector

n integer desired number of chunks

Value

list with n elements, each of roughly equal length

text2vec text2vec

Description

Fast vectorization, topic modeling, distances and GloVe word embeddings in R.

Details

To learn more about text2vec visit project website: http://text2vec.org Or start with the vi-
gnettes: browseVignettes(package = "text2vec")

http://text2vec.org

TfIdf 31

TfIdf TfIdf

Description

Creates TfIdf(Latent semantic analysis) model. "smooth" IDF (default) is defined as follows:
idf = log(1 + (# documents in the corpus) / (# documents where the term appears)) "non-
smooth" IDF is defined as follows: idf = log((# documents in the corpus) / (# documents where
the term appears))

Usage

TfIdf

Format

R6Class object.

Details

Term Frequency Inverse Document Frequency

Usage

For usage details see Methods, Arguments and Examples sections.

tfidf = TfIdf$new(smooth_idf = TRUE, norm = c('l1', 'l2', 'none'), sublinear_tf = FALSE)
tfidf$fit_transform(x)
tfidf$transform(x)

Methods

$new(smooth_idf = TRUE, norm = c("l1", "l2", "none"), sublinear_tf = FALSE) Creates tf-
idf model

$fit_transform(x) fit model to an input sparse matrix (preferably in "dgCMatrix" format) and
then transforms it.

$transform(x) transform new data x using tf-idf from train data

Arguments

tfidf A TfIdf object
x An input term-co-occurence matrix. Preferably in dgCMatrix format
smooth_idf TRUE smooth IDF weights by adding one to document frequencies, as if an extra doc-

ument was seen containing every term in the collection exactly once.
norm c("l1", "l2", "none") Type of normalization to apply to term vectors. "l1" by default,

i.e., scale by the number of words in the document.
sublinear_tf FALSE Apply sublinear term-frequency scaling, i.e., replace the term frequency with

1 + log(TF)

32 tokenizers

Examples

data("movie_review")
N = 100
tokens = word_tokenizer(tolower(movie_review$review[1:N]))
dtm = create_dtm(itoken(tokens), hash_vectorizer())
model_tfidf = TfIdf$new()
dtm_tfidf = model_tfidf$fit_transform(dtm)

tokenizers Simple tokenization functions for string splitting

Description

Few simple tokenization functions. For more comprehensive list see tokenizers package: https:
//cran.r-project.org/package=tokenizers. Also check stringi::stri_split_*.

Usage

word_tokenizer(strings, ...)

char_tokenizer(strings, ...)

space_tokenizer(strings, sep = " ", xptr = FALSE, ...)

postag_lemma_tokenizer(strings, udpipe_model, tagger = "default",
tokenizer = "tokenizer", pos_keep = character(0),
pos_remove = c("PUNCT", "DET", "ADP", "SYM", "PART", "SCONJ", "CCONJ",
"AUX", "X", "INTJ"))

Arguments

strings character vector

... other parameters (usually not used - see source code for details).

sep character, nchar(sep) = 1 - split strings by this character.

xptr logical tokenize at C++ level - could speed-up by 15-50%.

udpipe_model - udpipe model, can be loaded with ?udpipe::udpipe_load_model

tagger "default" - tagger parameter as per ?udpipe::udpipe_annotate docs.

tokenizer "tokenizer" - tokenizer parameter as per ?udpipe::udpipe_annotate docs.

pos_keep character(0) specifies which tokens to keep. character(0) means to keep
all of them

pos_remove c("PUNCT", "DET", "ADP", "SYM", "PART", "SCONJ", "CCONJ", "AUX", "X",
"INTJ") - which tokens to remove. character(0) is equal to not remove any.

Value

list of character vectors. Each element of list contains vector of tokens.

https://cran.r-project.org/package=tokenizers
https://cran.r-project.org/package=tokenizers

vectorizers 33

Examples

doc = c("first second", "bla, bla, blaa")
split by words
word_tokenizer(doc)
#faster, but far less general - perform split by a fixed single whitespace symbol.
space_tokenizer(doc, " ")

vectorizers Vocabulary and hash vectorizers

Description

This function creates an object (closure) which defines on how to transform list of tokens into vector
space - i.e. how to map words to indices. It supposed to be used only as argument to create_dtm,
create_tcm, create_vocabulary.

Usage

vocab_vectorizer(vocabulary)

hash_vectorizer(hash_size = 2^18, ngram = c(1L, 1L),
signed_hash = FALSE)

Arguments

vocabulary text2vec_vocabulary object, see create_vocabulary.

hash_size integer The number of of hash-buckets for the feature hashing trick. The num-
ber must be greater than 0, and preferably it will be a power of 2.

ngram integer vector. The lower and upper boundary of the range of n-values for
different n-grams to be extracted. All values of n such that ngram_min <= n <=
ngram_max will be used.

signed_hash logical, indicating whether to use a signed hash-function to reduce collisions
when hashing.

Value

A vectorizer object (closure).

See Also

create_dtm create_tcm create_vocabulary

34 vectorizers

Examples

data("movie_review")
N = 100
vectorizer = hash_vectorizer(2 ^ 18, c(1L, 2L))
it = itoken(movie_review$review[1:N], preprocess_function = tolower,

tokenizer = word_tokenizer, n_chunks = 10)
hash_dtm = create_dtm(it, vectorizer)

it = itoken(movie_review$review[1:N], preprocess_function = tolower,
tokenizer = word_tokenizer, n_chunks = 10)

v = create_vocabulary(it, c(1L, 1L))

vectorizer = vocab_vectorizer(v)

it = itoken(movie_review$review[1:N], preprocess_function = tolower,
tokenizer = word_tokenizer, n_chunks = 10)

dtm = create_dtm(it, vectorizer)

Index

∗ datasets
BNS, 3
Collocations, 8
GloVe, 17
LatentDirichletAllocation, 21
LatentSemanticAnalysis, 23
movie_review, 24
RelaxedWordMoversDistance, 27
TfIdf, 31

as.lda_c, 2

BNS, 3

char_tokenizer (tokenizers), 32
check_analogy_accuracy, 4, 26
coherence, 4
Collocations, 8
combine_vocabularies, 10
create_dtm, 11, 14, 19, 20, 25, 33
create_tcm, 13, 13, 19, 20, 33
create_vocabulary, 11, 14, 19, 20, 33

dist, 17
dist2 (distances), 16
distances, 16

GlobalVectors (GloVe), 17
GloVe, 4, 13, 17, 26

hash_vectorizer (vectorizers), 33

idir, 20
idir (ifiles), 18
ifiles, 18, 20
ifiles_parallel (ifiles), 18
itoken, 12–15, 18, 19, 20
itoken_parallel (itoken), 19

jsPCA_robust, 21

LatentDirichletAllocation, 21

LatentSemanticAnalysis, 23
LDA (LatentDirichletAllocation), 21
LSA (LatentSemanticAnalysis), 23

movie_review, 24

normalize, 25

pdist2 (distances), 16
perplexity, 25
postag_lemma_tokenizer (tokenizers), 32
prepare_analogy_questions, 4, 26
prune_vocabulary, 27
psim2 (similarities), 29

R6Class, 3, 8, 21, 23, 28, 31
RelaxedWordMoversDistance, 27
RWMD, 17
RWMD (RelaxedWordMoversDistance), 27

sim2 (similarities), 29
similarities, 29
space_tokenizer (tokenizers), 32
split_into, 30

text2vec, 30
TfIdf, 31
tokenizers, 32

vectorizers, 12, 13, 19, 20, 33
vocab_vectorizer (vectorizers), 33
vocabulary, 27
vocabulary (create_vocabulary), 14

word_tokenizer (tokenizers), 32

35

	as.lda_c
	BNS
	check_analogy_accuracy
	coherence
	Collocations
	combine_vocabularies
	create_dtm
	create_tcm
	create_vocabulary
	distances
	GloVe
	ifiles
	itoken
	jsPCA_robust
	LatentDirichletAllocation
	LatentSemanticAnalysis
	movie_review
	normalize
	perplexity
	prepare_analogy_questions
	prune_vocabulary
	RelaxedWordMoversDistance
	similarities
	split_into
	text2vec
	TfIdf
	tokenizers
	vectorizers
	Index

