
Package ‘this.path’
January 16, 2023

Version 1.2.0

License MIT + file LICENSE

Title Get Executing Script's Path, from 'Rgui', 'RStudio', 'VSCode',
'source()', and 'Rscript' (Shells Including Windows Command Line /
/ Unix Terminal)

Description Determine the path of the executing script. Works when
running a line or selection in 'Rgui', 'RStudio', and 'VSCode',
when using 'source()', 'sys.source()', 'debugSource()' in 'RStudio',
'testthat::source_file()', and 'knitr::knit()', and when running
from a shell.

Author Andrew Simmons

Maintainer Andrew Simmons <akwsimmo@gmail.com>

Suggests utils, microbenchmark

Enhances knitr, rprojroot, rstudioapi, testthat

URL https://github.com/ArcadeAntics/this.path

BugReports https://github.com/ArcadeAntics/this.path/issues

Biarch TRUE

Encoding UTF-8

R topics documented:
this.path-package . 2
Args . 3
as.relative.path . 5
basename2 . 6
check.path . 8
ext . 9
from.shell . 10
getinitwd . 11
here . 11
LINENO . 12
OS.type . 13
path.join . 14
R.from.shell . 15
shFILE . 17

1

https://github.com/ArcadeAntics/this.path
https://github.com/ArcadeAntics/this.path/issues

2 this.path-package

Sys.putenv . 18
this.path . 19
this.path-defunct . 23
this.proj . 24
tryCatch2 . 24
wrap.source . 25

Index 31

this.path-package Get Executing Script’s Path, from ‘Rgui’, ‘RStudio’, ‘VSCode’,
source(), and Rscript (Shells Including Windows Command Line
/ / Unix Terminal)

Description

Determine the path of the executing script. Works when running a line or selection in ‘Rgui’, ‘RStu-
dio’, and ‘VSCode’, when using source, sys.source, debugSource in ‘RStudio’, testthat::source_file,
and knitr::knit, and when running from a shell.

Details

this.path() returns the normalized path of the executing script.

this.dir() returns the normalized path of the directory in which the executing script is located.

here() constructs file paths relative to the executing script’s directory.

path.join(), basename2(), and dirname2() are replacements for file.path(), basename(),
and dirname() that better handle drives, network shares, and a few important edge cases.

splitext(), removeext(), ext(), and ext<-() split paths into root and extension, remove exten-
sions, get extensions, and set extensions, respectively.

check.path() and check.dir() check that this.path() and this.dir() are functioning cor-
rectly.

as.rel.path() (or as.relative.path()) will turn absolute paths into relative paths.

asArgs(), fileArgs(), progArgs(), and withArgs() provide functionality for running scripts
with arguments in the same session, as opposed to a new one with Rscript.

is.main() and from.shell() determine if an R script is the main executing script or is run from
a shell.

shFILE() extracts ‘FILE’ from the command line arguments.

tryCatch2() adds argument else. that runs if no error is thrown. This helps to run extra code that
is not intended to be protected by the condition handlers.

Note

This package started from a stack overflow posting, found at:

https://stackoverflow.com/questions/1815606/determine-path-of-the-executing-script

If you like this package, please consider upvoting my answer so that more people will see it! If
you have an issue with this package, please use utils::bug.report(package = "this.path") to
report your issue.

https://support.posit.co/hc/en-us/articles/205612627-Debugging-with-the-RStudio-IDE
https://stackoverflow.com/questions/1815606/determine-path-of-the-executing-script

Args 3

Author(s)

Andrew Simmons

Maintainer: Andrew Simmons <akwsimmo@gmail.com>

See Also

source, sys.source, debugSource in ‘RStudio’, testthat::source_file, knitr::knit

R.from.shell

Args Providing Arguments to a Script

Description

withArgs allows you to source an R script while providing arguments. As opposed to running
with Rscript, the code will be evaluated in the same session, in an environment of your choosing.

fileArgs() / / progArgs() are generalized versions of commandArgs(trailingOnly = TRUE), al-
lowing you to access the script’s arguments whether it was sourced or run from a shell.

asArgs coerces R objects into a character vector, for use with command line applications and
withArgs.

Usage

asArgs(...)
fileArgs()
progArgs()
withArgs(...)

Arguments

... R objects to turn into scripts arguments; typically logical, numeric, character,
Date, and POSIXt vectors.
for withArgs, the first argument should be an (unevaluated) call to source,
sys.source, debugSource in ‘RStudio’, testthat::source_file, or knitr::knit.

Details

fileArgs() will return the arguments associated with the executing script, or character(0) when
there is no executing script.

progArgs() will return the arguments assocaited with the executing script, or commandArgs(trailingOnly
= TRUE) when there is no executing script.

asArgs() coerces objects into command-line arguments. ... is first put into a list, and then each
non-list element is converted to character. They are converted as follows:

Factors (class "factor") using as.character.factor

Date-Times (class "POSIXct" and "POSIXlt") using format "%Y-%m-%d %H:%M:%OS6" (retains as
much precision as possible)

Numbers (class "numeric" and "complex") with 17 significant digits (retains as much precision
as possible) and "." as the decimal point character.

https://support.posit.co/hc/en-us/articles/205612627-Debugging-with-the-RStudio-IDE
https://support.posit.co/hc/en-us/articles/205612627-Debugging-with-the-RStudio-IDE

4 Args

Raw Bytes (class "raw") using sprintf("0x%02x",) (can easily convert back to raw with as.raw()
or as.vector(, "raw"))

All others will be converted to character using as.character and its methods.

The arguments will then be unlisted, and all attributes will be removed. Arguments that are NA_character_
after conversion will be converted to "NA" (since the command-line arguments also never have miss-
ing strings).

Value

for asArgs, fileArgs, and progArgs, a character vector.

for withArgs, the result of evaluating expr.

Examples

this.path::asArgs(
NULL,
c(TRUE, FALSE, NA),
1:5,
pi,
exp(6i),
letters[1:5],
as.raw(0:4),
as.Date("1970-01-01"),
as.POSIXct("1970-01-01 00:00:00"),
list(

list(
list(

"lists are recursed"
)

)
)

)

FILE <- tempfile(fileext = ".R")
this.path:::write.code({

withAutoprint({
this.path::this.path()
this.path::fileArgs()
this.path::progArgs()

}, spaced = TRUE, verbose = FALSE, width.cutoff = 60L)
}, FILE)

wrap your source call with a call to 'withArgs'
this.path::withArgs(

source(FILE, local = TRUE, verbose = FALSE),
letters, pi, exp(1)

)
this.path::withArgs(

sys.source(FILE, environment()),
letters, pi + 1i * exp(1)

)
this.path:::.Rscript(c("--default-packages=this.path", "--vanilla", FILE,

this.path::asArgs(letters, pi, as.POSIXct("2022-07-17 04:25"))))

as.relative.path 5

with R >= 4.1.0, use the forward pipe operator '|>' to
make calls to 'withArgs' more intuitive:
source(FILE, local = TRUE, verbose = FALSE) |> this.path::withArgs(
letters, pi, exp(1)
)
sys.source(FILE, environment()) |> this.path::withArgs(
letters, pi + 1i * exp(1)
)

withArgs() also works with inside.source() and wrap.source()
sourcelike <- function (file, envir = parent.frame())
{

file <- inside.source(file)
envir <- as.environment(envir)
exprs <- parse(n = -1, file = file, srcfile = NULL, keep.source = FALSE)
for (i in seq_along(exprs)) eval(exprs[i], envir)

}
this.path::withArgs(sourcelike(FILE), letters)

sourcelike2 <- function (file, envir = parent.frame())
{

envir <- as.environment(envir)
exprs <- parse(n = -1, file = file, srcfile = NULL, keep.source = FALSE)
for (i in seq_along(exprs)) eval(exprs[i], envir)

}
sourcelike3 <- function (file, envir = parent.frame())
{

envir <- as.environment(envir)
wrap.source(sourcelike2(file = file, envir = envir))

}
this.path::withArgs(sourcelike3(FILE), letters)
this.path::withArgs(wrap.source(sourcelike2(FILE)), letters)

as.relative.path Make a Path Relative to Another Path

Description

When working with this.path, you will be dealing with a lot of absolute paths. These paths are no
good for saving within files, so you will need to use as.relative.path() to turn your absolute
paths into relative paths.

Usage

as.relative.path(path, relative.to = this.dir(verbose = FALSE))
as.rel.path (path, relative.to = this.dir(verbose = FALSE))
relpath (path, relative.to = getwd())

6 basename2

Arguments

path character vector of file / / URL paths.

relative.to character string; the file / / URL path to make path relative to.

Details

Tilde-expansion (see path.expand) is first done on path and relative.to.

If path and relative.to are equivalent, "." will be returned. If path and relative.to have no
base in common, the normalized path will be returned.

Value

character vector of the same length as path.

Note

relpath and as.rel.path are the same function with different default arguments.

Examples

Not run:
relpath(

c(
paths which are equivalent will return "."
"C:/Users/effective_user/Documents/this.path/man",

paths which have no base in common return as themselves
"https://raw.githubusercontent.com/ArcadeAntics/this.path/main/tests/this.path_w_URLs.R",

"D:/",
"//host-name/share-name/path/to/file",

"C:/Users/effective_user/Documents/testing",
"C:\\Users\\effective_user",
"C:/Users/effective_user/Documents/R/this.path.R"

),
relative.to = "C:/Users/effective_user/Documents/this.path/man"

)

End(Not run)

basename2 Manipulate File Paths

Description

basename2 removes all of the path up to and including the last path separator (if any).

dirname2 returns the part of the path up to but excluding the last path separator, or "." if there is
no path separator.

basename2 7

Usage

basename2(path)
dirname2(path)

Arguments

path character vector, containing path names.

Details

tilde expansion of the path will be performed.

Trailing path separators are removed before dissecting the path, and for dirname2() any trailing
file separators are removed from the result.

Value

A character vector of the same length as path.

Behaviour on Windows

If path is an empty string, then both dirname2() and basename2() return an emty string.

\ and / are accepted as path separators, and dirname2() does NOT translate the path separators.

Recall that a network share looks like "//host/share" and a drive looks like "d:".

For a path which starts with a network share or drive, the path specification is the portion of the
string immediately afterward, e.g. "/path/to/file" is the path specification of "//host/share/path/to/file"
and "d:/path/to/file". For a path which does not start with a network share or drive, the path
specification is the entire string.

And lastly, the path specification of a network share will always be empty or absolute, but the path
specification of a drive does not have to be, e.g. "d:file" is a valid path despite the fact that the
path specification does not begin with "/".

If the path specification of path is empty or is "/", then dirname2() will return path and basename2()
will return an empty string.

Behaviour Elsewhere

If path is an empty string, then both dirname2() and basename2() return an emty string.

Recall that a network share looks like "//host/share".

For a path which starts with a network share, the path specification is the portion of the string imme-
diately afterward, e.g. "/path/to/file" is the path specification of "//host/share/path/to/file".
For a path which does not start with a network share, the path specification is the entire string.

If the path specification of path is empty or is "/", then dirname2() will return path and basename2()
will return an empty string.

Examples

path <- c("/usr/lib", "/usr/", "usr", "/", ".", "..")
print(cbind(

path, dirname = dirname2(path), basename = basename2(path)),
quote = FALSE, print.gap = 3)

8 check.path

check.path Check this.path() is Functioning Correctly

Description

Add check.path("path/to/file") to the beginning of your script to initialize this.path(), and
check that this.path() is returning the path you expect.

Usage

check.path(...)
check.dir(...)

Arguments

... further arguments passed to path.join which must return a character string; the
path you expect this.path() or this.dir() to return. The specified path can
be as deep as necessary (just the basename, the last directory and the basename,
the last two directories and the basename, . . .), but using an absolute path is not
intended (recommended against). this.path() makes R scripts portable, but
using an absolute path in check.path or check.dir makes an R script non-
portable, defeating the whole purpose of this package.

Value

If the expected path / / directory matches this.path() / / this.dir(), then TRUE invisibly.

Otherwise, an error is raised.

Examples

I have a project called 'EOAdjusted'
#
Within this project, I have a folder called 'code'
where I place all of my scripts.
#
One of these scripts is called 'provrun.R'
#
So, at the top of that R script, I could write:

this.path::check.path("EOAdjusted", "code", "provrun.R")
#
or
#
this.path::check.path("EOAdjusted/code/provrun.R")

ext 9

ext File Extensions

Description

splitext splits an extension from a path.

removeext removes an extension from a path.

ext gets the extension of a path.

ext<- sets the extension of a path.

Usage

splitext(path, compression = FALSE)
removeext(path, compression = FALSE)
ext(path, compression = FALSE)
ext(path, compression = FALSE) <- value

Arguments

path character vector, containing path names.

compression should compression extensions ‘.gz’, ‘.bz2’, and ‘.xz’ be taken into account
when removing/getting an extension?

value a character vector, typically of length 1 or length(path), or NULL.

Details

tilde expansion of the path will be performed.

Trailing path separators are removed before dissecting the path.

It will always be true that path == paste0(removeext(path), ext(path)).

Value

for splitext, a matrix with 2 rows and length(path) columns. The first row will be the roots of
the paths, the second row will be the extensions of the paths.

for removeext and ext, a character vector the same length as path.

for ext<-, the updated object.

Examples

splitext(character(0))
splitext("")

splitext("file.ext")

splitext(c("file.tar.gz", "file.tar.bz2", "file.tar.xz"), compression = FALSE)
splitext(c("file.tar.gz", "file.tar.bz2", "file.tar.xz"), compression = TRUE)

x <- "this.path_1.0.0.tar.gz"
ext(x) <- ".png"
x

10 from.shell

x <- "this.path_1.0.0.tar.gz"
ext(x, compression = TRUE) <- ".png"
x

from.shell Top-Level Code Environment

Description

Determine is a program is the main program, or if an R script was run from a shell.

Usage

from.shell()
is.main()

Details

When an R script is run from a shell, from.shell() and is.main() will both be TRUE. If that script
sources another R script, from.shell() and is.main() will both be FALSE for the duration of the
second script.

Otherwise, from.shell() will be FALSE. is.main() will be TRUE when there is no executing script
or when source-ing a script in a toplevel context, and FALSE otherwise.

Value

TRUE or FALSE.

Examples

FILES <- tempfile(c("file1_", "file2_"), fileext = ".R")
this.path:::write.code(file = FILES[1], bquote(withAutoprint({

from.shell()
is.main()
source(.(FILES[2]), echo = TRUE, verbose = FALSE,

prompt.echo = "file2> ", continue.echo = "file2+ ")
}, spaced = TRUE, verbose = FALSE, width.cutoff = 60L,

prompt.echo = "file1> ", continue.echo = "file1+ ")))
this.path:::write.code({

from.shell()
is.main()

}, FILES[2])

this.path:::.Rscript(c("--default-packages=this.path", "--vanilla", FILES[1]))

this.path:::.Rscript(c("--default-packages=this.path", "--vanilla",
"-e", "cat(\"\n> from.shell()\\n\")",
"-e", "from.shell()",
"-e", "cat(\"\n> is.main()\\n\")",
"-e", "is.main()",

getinitwd 11

"-e", "cat(\"\n> source(commandArgs(TRUE)[1L], verbose = FALSE)\\n\")",
"-e", "source(commandArgs(TRUE)[1L], verbose = FALSE)",
FILES[1]))

getinitwd Get Initial Working Directory

Description

getinitwd returns an absolute filepath representing the working directory at the time of loading
this package.

Usage

getinitwd()
initwd

Value

getinitwd returns a character string or NULL if the working directory is not available.

Examples

cat("initial working directory:\n")
getinitwd()

cat("current working directory:\n")
getwd()

here Construct Path to File, Beginning with this.dir()

Description

Construct the path to a file from components/paths in a platform-DEPENDENT way, starting with
this.dir().

Usage

here(..., .. = 0)
ici(..., .. = 0)

Arguments

... further arguments passed to path.join().

.. the number of directories to go back.

Details

The path to a file begins with a base. The base is .. number of directories back from the executing
script’s directory (this.dir()). The argument is named .. because ".." refers to the parent
directory in Windows, Unix, and URL paths alike.

12 LINENO

Value

A character vector of the arguments concatenated term-by-term, beginning with the executing
script’s directory.

Examples

FILE <- tempfile(fileext = ".R")
this.path:::write.code({

this.path::here()
this.path::here(.. = 1)
this.path::here(.. = 2)

use 'here' to read input from a file located nearby
this.path::here(.. = 1, "input", "file1.csv")

or maybe to run another script
this.path::here("script2.R")

}, FILE)

source(FILE, echo = TRUE, verbose = FALSE)

LINENO Line Number of Executing Script

Description

Get the line number of the executing script.

Usage

LINENO()

Value

An integer, NA_integer_ if the line number cannot be determined.

Note

LINENO() only works if the executing script has a srcref and a srcfile. Scripts run with Rscript
do not store their srcref, even when getOption("keep.source") is TRUE.

For source or sys.source, make sure to supply argument keep.source = TRUE directly, or set the
options "keep.source" or "keep.source.pkgs" to TRUE.

For debugSource in ‘RStudio’, it has no argument keep.source, so set the option "keep.source"
to TRUE before calling.

https://support.posit.co/hc/en-us/articles/205612627-Debugging-with-the-RStudio-IDE

OS.type 13

For testthat::source_file, the srcref is always stored, so you do not need to do anything
special before calling.

For knitr::knit, there is nothing that can be done, the srcref is never stored. I am looking into
a fix for such a thing.

Examples

FILE <- tempfile(fileext = ".R")
writeLines(c(

"LINENO()",
"LINENO()",
"# LINENO() respects #line directives",
"#line 1218",
"LINENO()"

), FILE)

previously used:
#
```

source(FILE, echo = TRUE, verbose = FALSE,
max.deparse.length = Inf, keep.source = TRUE)
```

#
but it echoes incorrectly with #line directives.
`source2()` echoes correctly!
this.path:::source2(FILE, echo = TRUE, verbose = FALSE,

max.deparse.length = Inf, keep.source = TRUE)

OS.type Detect the Operating System Type

Description

OS.type is a list of TRUE/FALSE values dependent of the platform under which this package was
built.

Usage

OS.type

Value

A list with at least the following components:

AIX Built under IBM AIX.

HPUX Built under Hewlett-Packard HP-UX.

linux Built under some distribution of Linux.

darwin Built under Apple OSX and iOS (Darwin).

iOS.simulator Built under iOS in Xcode simulator.

iOS Built under iOS on iPhone, iPad, etc.

14 path.join

macOS Built under OSX.
solaris Built under Solaris (SunOS).
cygwin Built under Cygwin POSIX under Microsoft Windows.
windows Built under Microsoft Windows.
win64 Built under Microsoft Windows (64-bit).
win32 Built under Microsoft Windows (32-bit).
UNIX Built under a UNIX-style OS.

Source

http://web.archive.org/web/20191012035921/http://nadeausoftware.com/articles/2012/01/c_c_tip_how_use_compiler_predefined_macros_detect_operating_system

path.join Construct Path to File

Description

Construct the path to a file from components/paths in a platform-DEPENDENT way.

Usage

path.join(...)

Arguments

... character vectors.

Details

When constructing a path to a file, the last absolute path is selected and all trailing paths are ap-
pended. This is different from file.path where all trailing paths are treated as components.

Value

A character vector of the arguments concatenated term-by-term and separated by "/".

Examples

path.join("C:", "test1")

path.join("C:/", "test1")

path.join("C:/path/to/file1", "/path/to/file2")

path.join("//host-name/share-name/path/to/file1", "/path/to/file2")

path.join("C:testing", "C:/testing", "~", "~/testing", "//host",
"//host/share", "//host/share/path/to/file", "not-an-abs-path")

path.join("c:/test1", "c:test2", "C:test3")

path.join("test1", "c:/test2", "test3", "//host/share/test4", "test5",
"c:/test6", "test7", "c:test8", "test9")

http://web.archive.org/web/20191012035921/http://nadeausoftware.com/articles/2012/01/c_c_tip_how_use_compiler_predefined_macros_detect_operating_system

R.from.shell 15

R.from.shell Using R From a Shell

Description

How to use R from a shell (including the Windows command-line / / Unix terminal).

Details

For the purpose of running R scripts, there are four ways to do it. Suppose our R script has filename
‘script1.R’, we could write any of:

• R -f script1.R

• R --file=script1.R

• R CMD BATCH script1.R

• Rscript script1.R

The first two are different ways of writing equivalent statements. The third statement is the first
statement plus options ‘--restore’ ‘--save’ (plus option ‘--no-readline’ under Unix-alikes),
and it also saves the stdout and stderr in a file of your choosing. The fourth statement is the
second statement plus options ‘--no-echo’ ‘--no-restore’. You can try:

• R --help

• R CMD BATCH --help

• Rscript --help

for a help message that describes what these options mean. In general, Rscript is the one you want
to use. It should be noted that Rscript has some exclusive environment variables (not used by
the other executables) that will make its behaviour different from R.

For the purpose of making packages, R CMD is what you will need. Most commonly, you will use:

• R CMD build

• R CMD INSTALL

• R CMD check

R CMD build will turn an R package (specified by a directory) into tarball. This allows for easy shar-
ing of R packages with other people, including submitting a package to CRAN. R CMD INSTALL will
install an R package (specified by a directory or tarball), and is used by utils::install.packages.
R CMD check will check an R package (specified by a tarball) for possible errors in code, documen-
tation, tests, and much more.

If, when you execute one of the previous commands, you see the following error message: “‘R’
is not recognized as an internal or external command, operable program or batch file.”, see section
Ease of Use on Windows.

Ease of Use on Windows

Under Unix-alikes, it is easy to invoke an R session from a shell by typing the name of the R
executable you wish to run. On Windows, you should see that typing the name of the R executable
you wish to run does not run that application, but instead signals an error. Instead, you will have to
type the full path of the directory where your R executables are located (see section Where are my
R executable files located?), followed by the name of the R executable you wish to run.

https://cran.r-project.org/submit.html

16 R.from.shell

This is not very convenient to type everytime something needs to be run from a shell, plus it has
another issue of being computer dependent. The solution is to add the path of the directory where
your R executables are located to the Path environment variable. The Path environment variable
is a list of directories where executable programs are located. When you type the name of an
executable program you wish to run, Windows looks for that program through each directory in the
Path environment variable. When you add the full path of the directory where your R executables
are located to your Path environment variable, you should be able to run any of those executable
programs by their basenames (‘R’, ‘Rcmd’, ‘Rscript’, and ‘Rterm’) instead of their full paths.

To add a new path to your Path environment variable:

1. Open the Control Panel

2. Open category User Accounts

3. Open category User Accounts (again)

4. Open Change my environment variables

5. Click the variable Path

6. Click the button Edit...

7. Click the button New

8. Type (or paste) the full path of the directory where your R executables are located, and press
OK

This will modify your environment variable Path, not the systems. If another user wishes to run R
from a shell, they will have to add the directory to their Path environment variable as well.

If you wish to modify the system environment variable Path (you will need admin permissions):

1. Open the Control Panel

2. Open category System and Security

3. Open category System

4. Open Advanced system settings

5. Click the button Environment Variables...

6. Modify Path same as before, just select Path in System variables instead of User variables

To check that this worked correctly, open a shell and execute the following commands:

• R --help

• R --version

You should see that the first prints the usage message for the R executable while the second prints
information about the version of R currently being run. If you have multiple versions of R installed,
make sure this is the version of R you wish to run.

Where are my R executable files located?

In an R session, you can find the location of your R executable files with the following command:
cat(sQuote(normalizePath(R.home("bin"))), "\n")

For me, this is:

‘C:\Program Files\R\R-4.2.2\bin\x64’

shFILE 17

shFILE Get Argument ‘FILE’ Provided to R by a Shell

Description

Look through the command line arguments, extracting ‘FILE’ from either of the following: ‘-f’
‘FILE’ or ‘--file=FILE’

Usage

shFILE(original = FALSE, for.msg = FALSE, default, else.)

Arguments

original TRUE, FALSE, or NA; should the original or the normalized path be returned? NA
means the normalized path will be returned if it has already been forced, and the
original path otherwise.

for.msg TRUE or FALSE; do you want the path for the purpose of printing a diagnostic
message / / warning / / error? for.msg = TRUE will ignore original = FALSE,
and will use original = NA instead.

default if ‘FILE’ is not found, this value is returned.

else. missing or a function to apply if ‘FILE’ is found. See tryCatch2 for inspiration.

Value

character string, or default if the command line argument ‘FILE’ was not found.

Note

The original and the normalized path are saved; this makes them faster when called subsequent
times.

In Windows, the normalized path will use / as the file separator.

See Also

this.path, here

Examples

FILE <- tempfile(fileext = ".R")
this.path:::write.code({

withAutoprint({
shFILE(original = TRUE)
shFILE()
shFILE(default = {

stop("since 'FILE' will be found, argument 'default' will not\n",
" be evaluated, so this error will not be thrown! you can\n",
" use this to your advantage in a similar manner, doing\n",
" arbitrary things only if 'FILE' is not found")

})
}, spaced = TRUE, verbose = FALSE, width.cutoff = 60L)

}, FILE)

18 Sys.putenv

this.path:::.Rscript(c("--default-packages=this.path", "--vanilla", FILE))

for (expr in c("shFILE(original = TRUE)",
"shFILE(original = TRUE, default = NULL)",
"shFILE()",
"shFILE(default = NULL)"))

{
cat("\n\n")
this.path:::.Rscript(c("--default-packages=this.path", "--vanilla", "-e", expr))

}

Sys.putenv Set Environment Variables

Description

Sys.putenv sets environment variables (for other processes called from within R or future calls to
Sys.getenv from this R process).

Usage

Sys.putenv(x)

Arguments

x a character vector, or an object coercible to character. Strings must be of the
form "name=value".

Value

A logical vector, with elements being true if setting the corresponding variable succeeded.

See Also

Sys.setenv

Examples

Sys.putenv(c("R_TEST=testit", "A+C=123"))
Sys.getenv("R_TEST")
Sys.unsetenv("R_TEST") # on Unix-alike may warn and not succeed
Sys.getenv("R_TEST", unset = NA)

this.path 19

this.path Determine Executing Script’s Filename

Description

this.path() returns the normalized path of the executing script.

this.dir() returns the normalized path of the directory in which the executing script is located.

See also here() for constructing paths to files, starting with this.dir().

Sys.path() and Sys.dir() are versions of this.path() and this.dir() that takes no arguments.

Usage

this.path(verbose = getOption("verbose"), original = FALSE,
for.msg = FALSE, default, else.)

this.dir (verbose = getOption("verbose"), default, else.)

Sys.path() # short for 'this.path(verbose = FALSE)'
Sys.dir () # short for 'this.dir (verbose = FALSE)'

Arguments

verbose TRUE or FALSE; should the method in which the path was determined be printed?

original TRUE, FALSE, or NA; should the original or the normalized path be returned? NA
means the normalized path will be returned if it has already been forced, and the
original path otherwise.

for.msg TRUE or FALSE; do you want the path for the purpose of printing a diagnostic
message / / warning / / error? This will return NA_character_ in most cases
where an error would have been thrown.
for.msg = TRUE will ignore original = FALSE, and will use original = NA in-
stead.

default if there is no executing script, this value is returned.

else. missing or a function to apply if there is an executing script. See tryCatch2 for
inspiration.

Details

There are three ways in which R code is typically run:

1. in ‘RStudio’ / / ‘Rgui’ / / ‘VSCode’ by running the current line / / selection with the Run
button / / appropriate keyboard shortcut

2. through a source call: a call to function source, sys.source, debugSource in ‘RStudio’,
testthat::source_file, or knitr::knit

3. from a shell, such as the Windows command-line / / Unix terminal

To retrieve the executing script’s filename, first an attempt is made to find a source call. The calls are
searched in reverse order so as to grab the most recent source call in the case of nested source calls.
If a source call was found, the file argument is returned from the function’s evaluation environment.
If you have your own source-like function that you would like to be recognized by this.path,
please contact the package maintainer so that it can be implemented or use inside.source().

https://support.posit.co/hc/en-us/articles/205612627-Debugging-with-the-RStudio-IDE

20 this.path

If no source call is found up the calling stack, then an attempt is made to figure out how R is
currently being used.

If R is being run from a shell, the shell arguments are searched for ‘-f’ ‘FILE’ or ‘--file=FILE’
(the two methods of taking input from ‘FILE’). this.path() used to insist that exactly one of either
type of argument must be supplied, but this has since been changed. Now, the last ‘FILE’ argument
is extracted (ignoring ‘-f’ ‘-’ and ‘--file=-’) and returned. It is an error to use this.path() if
no arguments of either type are supplied.

If R is being run from a shell under Unix-alikes with ‘-g’ ‘Tk’ or ‘--gui=Tk’, this.path() will
signal an error. ‘Tk’ does not make use of its ‘-f’ ‘FILE’, ‘--file=FILE’ arguments.

If R is being run from ‘RStudio’, the active document’s filename (the document in which the cursor
is active) is returned (at the time of evaluation). If the active document is the R console, the source
document’s filename (the document open in the current tab) is returned (at the time of evaluation).
Please note that the source document will NEVER be a document open in another window (with
the Show in new window button). It is important to not leave the current tab (either by closing or
switching tabs) while any calls to this.path() have yet to be evaluated in the run selection. It is
an error for no documents to be open or for a document to not exist (not saved anywhere).

If R is being run from ‘Rgui’, the source document’s filename (the document most recently inter-
acted with besides the R Console) is returned (at the time of evaluation). Please note that minimized
documents WILL be included when looking for the most recently used document. It is important
to not leave the current document (either by closing the document or interacting with another doc-
ument) while any calls to this.path() have yet to be evaluated in the run selection. It is an error
for no documents to be open or for a document to not exist (not saved anywhere).

If R is being run ‘VSCode’, the source document’s filename is returned (at the time of evaluation).
It is important to not leave the current tab (either by closing or switching tabs) while any calls to
this.path() have yet to be evaluated in the run selection. It is an error for a document to not exist
(not saved anywhere).

If R is being run from ‘AQUA’, the executing script’s path cannot be determined. Unlike ‘RStudio’,
‘Rgui’, and ‘VSCode’, there is currently no way to request the path of an open document. Until
such a time that there is a method for requesting the path of an open document, consider using
‘RStudio’ or ‘VSCode’.

If R is being run in another manner, it is an error to use this.path.

If your GUI of choice is not implemented with this.path, please contact the package maintainer
so that it can be implemented.

Value

character string; the executing script’s filename.

Note

The first time this.path() is called within a script, it will normalize the script’s path, checking
that the script exists (throwing an error if it does not), and save it in the appropriate environment.
When this.path() is called subsequent times within the same script, it returns the saved path.
This will be faster than the first time, will not check for file existence, and will be independent of
the working directory.

As a side effect, this means that a script can delete itself using file.remove or unlink but still
know its own path for the remainder of the script.

Within a script that contains calls to both this.path() and setwd(), this.path() MUST be used
AT LEAST once before the first call to setwd(). This is not always necessary; if you ran a script

this.path 21

using its absolute path as opposed to its relative path, changing the working directory has no effect.
However, it is still advised against.

The following is NOT an example of bad practice:

setwd(this.path::this.dir())

setwd() is most certainly written before this.path(), but this.path() will be evaluated first. It
is not the written order that is bad practice, but the order of evaluation. Do not change the working
directory before calling this.path() at least once.

Please DO NOT use this.path() inside the site-wide startup profile file, the user profile, nor the
function .First (see ?Startup). This has inconsistent results dependent on the GUI, and often
incorrect. For example:

in ‘RStudio’ in all three cases, it throws an error:

> this.path(original = TRUE)
Error in (.rs.api.getActiveDocumentContext)() :
RStudio has not finished loading

in ‘VSCode’ in the site-wide startup profile file and the function .First, it throws an error:

> this.path(original = TRUE)
Error : RStudio not running

but in the user profile, it returns:

> this.path(original = TRUE)
Source: call to function source
[1] "~/.Rprofile"

> this.path()
[1] "C:/Users/iris/Documents/.Rprofile"

in ‘Rgui’ in all three cases, it throws an error:

> this.path(original = TRUE)
Error in .this.path(verbose, original, for.msg) :
'this.path' used in an inappropriate fashion

* no appropriate source call was found up the calling stack
* R is being run from Rgui with no documents open

in ‘Rterm’ in all three cases, it returns the command line argument ‘FILE’:

> this.path(original = TRUE)
Source: shell argument 'FILE'
[1] "./file569c63d647ba.R"

> this.path()
[1] "C:/Users/iris/AppData/Local/Temp/RtmpGMmR3A/file569c63d647ba.R"

Sometimes it returns the command line argument ‘FILE’, sometimes it returns the path of the user
profile, and other times it throws an error. Alternatively, you could use shFILE(), supplying a
default argument when no ‘FILE’ is specificed, and supplying an else. function for when one is
specified.

22 this.path

See Also

here

shFILE

wrap.source, inside.source

this.path-package

source, sys.source, debugSource in ‘RStudio’, testthat::source_file, knitr::knit

R.from.shell

Examples

FILE <- tempfile(fileext = ".R")
this.path:::write.code({

withAutoprint({
cat(sQuote(this.path::this.path(verbose = TRUE, default = {

stop("since the executing script's path will be found, argument\n",
" 'default' will not be evaluated, so this error will not\n",
" be thrown! you can use this to your advantage in a\n",
" similar manner, doing arbitrary things only if the\n",
" executing script does not exist")

})), "\n\n")
}, spaced = TRUE, verbose = FALSE, width.cutoff = 60L)

}, FILE)

source(FILE, verbose = FALSE)
sys.source(FILE, envir = environment())
if (.Platform$GUI == "RStudio")

get("debugSource", "tools:rstudio", inherits = FALSE)(FILE)
if (requireNamespace("testthat"))

testthat::source_file(FILE, chdir = FALSE, wrap = FALSE)
if (requireNamespace("knitr")) {

writeLines(con = FILE2 <- tempfile(fileext = ".Rmd"), c(
"```{r}",
same expression as above
deparse(parse(FILE)[[c(1L, 2L, 2L)]]),
"```"

))
knitr::knit(input = FILE2, output = FILE3 <- tempfile(fileext = ".md"),

quiet = TRUE)
cat(sprintf("\n$ cat -bsT %s\n", shQuote(FILE2)))
this.path:::cat.file(FILE2, number.nonblank = TRUE,

squeeze.blank = TRUE, show.tabs = TRUE)
cat(sprintf("\n$ cat -bsT %s\n", shQuote(FILE3)))
this.path:::cat.file(FILE3, number.nonblank = TRUE,

squeeze.blank = TRUE, show.tabs = TRUE)
cat("\n")
unlink(c(FILE3, FILE2))

}

this.path:::.Rscript(c("--default-packages=NULL", "--vanilla", FILE))

this.path also works when source-ing a URL

https://support.posit.co/hc/en-us/articles/205612627-Debugging-with-the-RStudio-IDE

this.path-defunct 23

(included tryCatch in case an internet connection is not available)
tryCatch({

source("https://raw.githubusercontent.com/ArcadeAntics/this.path/main/tests/this.path_w_URLs.R")
}, condition = message)

for (expr in c("this.path()",
"this.path(default = NULL)",
"this.dir()",
"this.dir(default = NULL)",
"this.dir(default = getwd())"))

{
cat("\n\n")
this.path:::.Rscript(c("--default-packages=this.path", "--vanilla", "-e", expr))

}

an example from R package 'logr'
this.path::this.path(verbose = FALSE, default = "script.log",

else. = function(path) {
replace extension (probably .R) with .log
this.path::ext(path) <- ".log"
path
or you could use paste0(this.path::removeext(path), ".log")

})

this.path-defunct Defunct Functions in Package this.path

Description

The functions or variables listed here are no longer part of this.path as they are no longer needed.

Usage

Defunct in 1.1.0
this.path2(...) # use 'this.path(..., default = NULL)' instead
this.dir2(...) # use 'this.dir(..., default = NULL)' instead
this.dir3(...) # use 'this.dir(..., default = getwd())' instead
normalized.shFILE(...) # use 'shFILE()' instead

Arguments

...

See Also

this.path, this.dir

24 tryCatch2

this.proj Construct Path to File, Beginning with Your Project Directory

Description

this.proj behaves very similarly to here::here except that you can have multiple projects in use
at once, and it will choose which project directory is appropriate based on this.dir(). Arguably,
this makes it better than here::here.

Usage

this.proj(...)

Arguments

... further arguments passed to path.join().

Value

A character vector of the arguments concatenated term-by-term, beginning with the project direc-
tory.

See Also

here

tryCatch2 Condition Handling and Recovery

Description

A variant of tryCatch that accepts an else. argument, similar to try except in ‘Python’.

Usage

tryCatch2(expr, ..., else., finally)

Arguments

expr expression to be evaluated.

... condition handlers.

else. expression to be evaluated if evaluating expr does not throw an error nor a con-
dition is caught.

finally expression to be evaluated before returning or exiting.

Details

The use of the else. argument is better than adding additional code to expr because it avoids
accidentally catching a condition that was not being protected by the tryCatch call.

wrap.source 25

Examples

FILES <- tempfile(c("existent-file_", "non-existent-file_"))
writeLines("line1\nline2", FILES[[1L]])
for (FILE in FILES) {

con <- file(FILE)
tryCatch2({

open(con, "r")
}, condition = function(cond) {

cat("cannot open", FILE, "\n")
}, else. = {

cat(FILE, "has", length(readLines(con)), "lines\n")
}, finally = {

close(con)
})

}
unlink(FILES)

wrap.source Implement this.path() For Arbitrary source-Like Functions

Description

A source-like function is any function which evaluates code from a file.

Currently, this.path() is implemented to work with source, sys.source, debugSource in ‘RStu-
dio’, testthat::source_file, and knitr::knit.

wrap.source() and inside.source() can be used to implement this.path() for any other
source-like functions.

set.this.path() is just an alias for inside.source().

Usage

wrap.source(expr,
path.only = FALSE,
character.only = path.only,
file.only = path.only,
conv2utf8 = FALSE,
allow.blank.string = FALSE,
allow.clipboard = !file.only,
allow.stdin = !file.only,
allow.url = !file.only,
allow.file.uri = !path.only,
allow.unz = !path.only,
allow.pipe = !file.only,
allow.terminal = !file.only,
allow.textConnection = !file.only,
allow.rawConnection = !file.only,
allow.sockconn = !file.only,
allow.servsockconn = !file.only,
allow.customConnection = !file.only,
ignore.all = FALSE,
ignore.blank.string = ignore.all,

https://support.posit.co/hc/en-us/articles/205612627-Debugging-with-the-RStudio-IDE

26 wrap.source

ignore.clipboard = ignore.all,
ignore.stdin = ignore.all,
ignore.url = ignore.all,
ignore.file.uri = ignore.all)

inside.source(file,
path.only = FALSE,
character.only = path.only,
file.only = path.only,
conv2utf8 = FALSE,
allow.blank.string = FALSE,
allow.clipboard = !file.only,
allow.stdin = !file.only,
allow.url = !file.only,
allow.file.uri = !path.only,
allow.unz = !path.only,
allow.pipe = !file.only,
allow.terminal = !file.only,
allow.textConnection = !file.only,
allow.rawConnection = !file.only,
allow.sockconn = !file.only,
allow.servsockconn = !file.only,
allow.customConnection = !file.only,
ignore.all = FALSE,
ignore.blank.string = ignore.all,
ignore.clipboard = ignore.all,
ignore.stdin = ignore.all,
ignore.url = ignore.all,
ignore.file.uri = ignore.all)

set.this.path(file,
path.only = FALSE,
character.only = path.only,
file.only = path.only,
conv2utf8 = FALSE,
allow.blank.string = FALSE,
allow.clipboard = !file.only,
allow.stdin = !file.only,
allow.url = !file.only,
allow.file.uri = !path.only,
allow.unz = !path.only,
allow.pipe = !file.only,
allow.terminal = !file.only,
allow.textConnection = !file.only,
allow.rawConnection = !file.only,
allow.sockconn = !file.only,
allow.servsockconn = !file.only,
allow.customConnection = !file.only,
ignore.all = FALSE,
ignore.blank.string = ignore.all,
ignore.clipboard = ignore.all,
ignore.stdin = ignore.all,

wrap.source 27

ignore.url = ignore.all,
ignore.file.uri = ignore.all)

Arguments

expr an (unevaluated) call to a source-like function.

file a connection or a character string giving the pathname of the file or URL to
read from.

path.only must file be an existing path? This implies character.only and file.only
are TRUE and implies allow.file.uri and allow.unz are FALSE, though these
can be manually changed.

character.only must file be a character string?

file.only must file refer to an existing file?

conv2utf8 if file is a character string, should it be converted to UTF-8?
allow.blank.string

may file be a blank string, i.e. ""?
allow.clipboard

may file be "clipboard" or a clipboard connection?

allow.stdin may file be "stdin"? Note that "stdin" refers to the C-level ‘standard input’
of the process, differing from stdin() which refers to the R-level ‘standard
input’.

allow.url may file be a URL pathname or a connection of class "url-libcurl" / /
"url-wininet"?

allow.file.uri may file be a ‘file://’ URI?
allow.unz, allow.pipe, allow.terminal, allow.textConnection, allow.rawConnection, allow.sockconn, allow.servsockconn

may file be a connection of class "unz" / / "pipe" / / "terminal" / / "textConnection"
/ / "rawConnection" / / "sockconn" / / "servsockconn"?

allow.customConnection

may file be a custom connection?
ignore.all, ignore.blank.string, ignore.clipboard, ignore.stdin, ignore.url, ignore.file.uri

ignore the special meaning of these types of strings, treating it as a path instead?

Details

inside.source() should be added to the body of your source-like function before reading / /
evaluating the expressions.

wrap.source(), unlike inside.source(), does not accept an argument file. Instead, an attempt
is made to extract the file from expr, after which expr is evaluated. It is assumed that the file is the
first argument of the function, as is the case with source, sys.source, debugSource in ‘RStudio’,
testthat::source_file, and knitr::knit. The function of the call is evaluated, its formals()
are retrieved, and then the arguments of expr are searched for a name matching the name of the first
formal argument. If a match cannot be found by name, the first unnamed argument is taken instead.
If no such argument exists, the file is assumed missing.

wrap.source() does non-standard evaluation and does some guess work to determine the file.
As such, it is less desirable than inside.source() when the option is available. I can think of
exactly one scenario in which wrap.source() might be preferable: suppose there is a source-
like function sourcelike() in a foreign package (a package for which you do not have write
permission). Suppose that you write your own function in which the formals are (...) to wrap
sourcelike():

https://support.posit.co/hc/en-us/articles/205612627-Debugging-with-the-RStudio-IDE

28 wrap.source

wrapper <- function (...)
{

possibly more args to wrap.source()
wrap.source(sourcelike(...))

}

This is the only scenario in which wrap.source() is preferable, since extracting the file from
the ... list would be a pain. Then again, you could simply change the formals of wrapper() from
(...) to (file, ...). If this does not describe your exact scenario, use inside.source() instead.

Value

for wrap.source, the result of evaluating expr.

for inside.source, if file is a path, then the normalized path with the same attributes, otherwise
file itself. The return value of inside.source() should be assigned to a variable before use,
something like:

{
file <- inside.source(file, ...)
sourcelike(file)

}

Note

Both functions should only be called within another function.

Suppose that the functions source, sys.source, debugSource in ‘RStudio’, testthat::source_file,
and knitr::knit were not implemented with this.path(). You could use inside.source() to
implement each of them as follows:

source wrapper <- function(file, ...) {
file <- inside.source(file)
source(file = file, ...)

}

sys.source wrapper <- function(file, ...) {
file <- inside.source(file, path.only = TRUE)
sys.source(file = file, ...)

}

debugSource in ‘RStudio’ wrapper <- function(fileName, ...) {
fileName <- inside.source(fileName, character.only = TRUE,

conv2utf8 = TRUE, allow.blank.string = TRUE)
debugSource(fileName = fileName, ...)

}

testthat::source_file wrapper <- function(path, ...) {
before testthat_3.1.2, source_file() used base::readLines() to
read the input lines. changed in 3.1.2, source_file() uses
brio::read_lines() which normalizes 'path' before reading,
disregarding the special meaning of the strings listed above
path <- inside.source(path, path.only = TRUE,
ignore.all = as.numeric_version(getNamespaceVersion("testthat")) >= "3.1.2")

testthat::source_file(path = path, ...)
}

https://support.posit.co/hc/en-us/articles/205612627-Debugging-with-the-RStudio-IDE
https://support.posit.co/hc/en-us/articles/205612627-Debugging-with-the-RStudio-IDE

wrap.source 29

knitr::knit wrapper <- function(input, ...) {
this works for the most part, but will not work in child mode
input <- inside.source(input)
knitr::knit(input = input, ...)

}

Examples

FILE <- tempfile(fileext = ".R")
this.path:::write.code({

this.path::this.path(verbose = TRUE)
}, FILE)

here we have a source-like function, suppose this
function is in a package for which you have write permission
sourcelike <- function (file, envir = parent.frame())
{

file <- inside.source(file)
envir <- as.environment(envir)
exprs <- parse(n = -1, file = file, srcfile = NULL, keep.source = FALSE)
this prints nicely
source(local = envir, echo = TRUE, exprs = exprs,

spaced = TRUE, verbose = FALSE, max.deparse.length = Inf)
you could alternatively do:
'for (i in seq_along(exprs)) eval(exprs[i], envir)'
which does no pretty printing

}

sourcelike(FILE)
sourcelike(con <- file(FILE)); close(con)

here we have another source-like function, suppose this function
is in a foreign package for which you do not have write permission
sourcelike2 <- function (pathname, envir = globalenv())
{

if (!(is.character(pathname) && file.exists(pathname)))
stop(gettextf("'%s' is not an existing file",

pathname, domain = "R-base"))
envir <- as.environment(envir)
exprs <- parse(n = -1, file = pathname, srcfile = NULL, keep.source = FALSE)
source(local = envir, echo = TRUE, exprs = exprs,

spaced = TRUE, verbose = FALSE, max.deparse.length = Inf)
}

the above function is similar to sys.source(), and it
expects a character string referring to an existing file
#
with the following, you should be able to use 'this.path()' within 'FILE':
wrap.source(sourcelike2(FILE), path.only = TRUE)

with R >= 4.1.0, use the forward pipe operator '|>' to
make calls to 'wrap.source' more intuitive:

30 wrap.source

sourcelike2(FILE) |> wrap.source(path.only = TRUE)

'wrap.source' can recognize arguments by name, so they
do not need to appear in the same order as the formals
wrap.source(sourcelike2(envir = new.env(), pathname = FILE), path.only = TRUE)

it it much easier to define a new function to do this
sourcelike3 <- function (...)
wrap.source(sourcelike2(...), path.only = TRUE)

the same as before
sourcelike3(FILE)

however, this is preferable:
sourcelike4 <- function (pathname, ...)
{

pathname is now normalized
pathname <- inside.source(pathname, path.only = TRUE)
sourcelike2(pathname = pathname, ...)

}
sourcelike4(FILE)

Index

∗ package
this.path-package, 2

Args, 3
as.character, 4
as.character.factor, 3
as.raw, 4
as.rel.path, 2
as.rel.path (as.relative.path), 5
as.relative.path, 2, 5
as.vector, 4
asArgs, 2
asArgs (Args), 3

basename, 2
basename2, 2, 6

character, 3
check.dir, 2
check.dir (check.path), 8
check.path, 2, 8
commandArgs, 3
connection, 27

Date, 3
dirname, 2
dirname2, 2
dirname2 (basename2), 6

ext, 2, 9
ext<- (ext), 9

file.path, 2, 14
file.remove, 20
fileArgs, 2
fileArgs (Args), 3
formals, 27
from.shell, 2, 10

getinitwd, 11
getOption, 12

here, 2, 11, 17, 19, 22, 24

ici (here), 11

initwd (getinitwd), 11
inside.source, 19, 22
inside.source (wrap.source), 25
is.main, 2
is.main (from.shell), 10

knitr::knit, 2, 3, 13, 19, 22, 25, 27–29

LINENO, 12
logical, 3

NA_character_, 19
normalize, 20
normalized, 2, 6, 19
normalized.shFILE (this.path-defunct),

23
numeric, 3

OS.type, 13

path.expand, 6
path.join, 2, 8, 11, 14, 24
POSIXt, 3
progArgs, 2
progArgs (Args), 3

R.from.shell, 3, 15, 22
relpath (as.relative.path), 5
removeext, 2
removeext (ext), 9
Rscript, 2, 3, 12

set.this.path (wrap.source), 25
setwd, 20
shFILE, 2, 17, 21, 22
source, 2, 3, 12, 19, 22, 25, 27, 28
splitext, 2
splitext (ext), 9
sprintf, 4
srcfile, 12
srcref, 12
Startup, 21
stderr, 15
stdin, 27
stdout, 15

31

32 INDEX

Sys.dir (this.path), 19
Sys.getenv, 18
Sys.path (this.path), 19
Sys.putenv, 18
Sys.setenv, 18
sys.source, 2, 3, 12, 19, 22, 25, 27, 28

testthat::source_file, 2, 3, 13, 19, 22, 25,
27, 28

this.dir, 2, 11, 23, 24
this.dir (this.path), 19
this.dir2 (this.path-defunct), 23
this.dir3 (this.path-defunct), 23
this.path, 2, 17, 19, 23, 25
this.path-defunct, 23
this.path-package, 2
this.path2 (this.path-defunct), 23
this.proj, 24
tryCatch, 24
tryCatch2, 2, 17, 19, 24

unlink, 20
utils::bug.report, 2
utils::install.packages, 15

withArgs, 2
withArgs (Args), 3
wrap.source, 22, 25

	this.path-package
	Args
	as.relative.path
	basename2
	check.path
	ext
	from.shell
	getinitwd
	here
	LINENO
	OS.type
	path.join
	R.from.shell
	shFILE
	Sys.putenv
	this.path
	this.path-defunct
	this.proj
	tryCatch2
	wrap.source
	Index

