The tipmap
package aims to facilitate the planning and
analysis of partial extrapolation studies in pediatric drug development.
It provides an implementation of a Bayesian tipping point approach based
on robust meta-analytic predictive (MAP) priors, with further functions
facilitating expert elicitation of a primary weight of the informative
component of the prior.
To install tipmap
use:
install.packages("tipmap")
library(tipmap)
<- create_new_trial_data(
ped_trial n_total = 30,
est = 1.27,
se = 0.95
) ped_trial
<- create_prior_data(
prior_data n_total = c(160, 240, 320),
est = c(1.23, 1.40, 1.51),
se = c(0.4, 0.36, 0.31)
) prior_data
<- sqrt(ped_trial["n_total"]) * ped_trial["se"]
uisd <-
g_map ::gMAP(
RBesTformula = cbind(est, se) ~ 1 | study_label,
data = prior_data,
family = gaussian,
weights = n_total,
tau.dist = "HalfNormal",
tau.prior = cbind(0, uisd / 16),
beta.prior = cbind(0, uisd)
)
<-
map_prior ::automixfit(
RBesTsample = g_map,
Nc = seq(1, 4),
k = 6,
thresh = -Inf
) map_prior
<- create_posterior_data(
posterior map_prior = map_prior,
new_trial_data = ped_trial,
sigma = uisd)
posterior
<- create_tipmap_data(
tipmap_data new_trial_data = ped_trial,
posterior = posterior,
map_prior = map_prior)
tipmap_plot(tipmap_data = tipmap_data)
get_tipping_points(
tipmap_data, quantile = c(0.025, 0.05, 0.1, 0.2),
null_effect = 0.1)