
Package ‘tmap’
October 14, 2022

License GPL-3

Title Thematic Maps

Type Package

LazyLoad yes

Description Thematic maps are geographical maps in which spatial data distributions are visual-
ized. This package offers a flexible, layer-based, and easy to use approach to create the-
matic maps, such as choropleths and bubble maps.

Version 3.3-3

Date 2022-03-01

Encoding UTF-8

Depends R (>= 3.5.0), methods

Imports tmaptools (>= 3.1), sf (>= 0.9-7), stars (>= 0.5-0), units (>=
0.6-1), grid, RColorBrewer, viridisLite, classInt (>= 0.4-3),
htmltools, htmlwidgets, widgetframe, leaflet (>= 2.0.2),
leafsync, leafem (>= 0.1), stats, abind, rlang, utils

Suggests rmapshaper, rmarkdown, knitr, png, cartogram, osmdata,
ggplot2, dplyr, tidyr, shiny, testthat, covr, av, gifski, s2

URL https://github.com/r-tmap/tmap

BugReports https://github.com/r-tmap/tmap/issues

VignetteBuilder knitr

RoxygenNote 7.1.2

NeedsCompilation no

Author Martijn Tennekes [aut, cre],
Jakub Nowosad [ctb],
Joel Gombin [ctb],
Sebastian Jeworutzki [ctb],
Kent Russell [ctb],
Richard Zijdeman [ctb],
John Clouse [ctb],
Robin Lovelace [ctb],
Jannes Muenchow [ctb]

1

https://github.com/r-tmap/tmap
https://github.com/r-tmap/tmap/issues

2 R topics documented:

Maintainer Martijn Tennekes <mtennekes@gmail.com>

Repository CRAN

Date/Publication 2022-03-02 08:50:02 UTC

R topics documented:
tmap-package . 3
+.tmap . 6
deprecated_functions . 6
land . 7
metro . 8
print.tmap . 8
qtm . 9
renderTmap . 13
rivers . 15
theme_ps . 15
tmap-element . 16
tmap_animation . 17
tmap_arrange . 19
tmap_design_mode . 21
tmap_format . 21
tmap_grob . 22
tmap_icons . 23
tmap_last . 24
tmap_leaflet . 25
tmap_mode . 26
tmap_options . 28
tmap_save . 33
tmap_style . 36
tmap_style_catalogue . 37
tmap_tip . 37
tm_add_legend . 38
tm_basemap . 40
tm_compass . 41
tm_credits . 43
tm_facets . 45
tm_fill . 50
tm_grid . 56
tm_iso . 60
tm_layout . 61
tm_lines . 71
tm_logo . 77
tm_minimap . 78
tm_mouse_coordinates . 79
tm_raster . 80
tm_scale_bar . 86
tm_sf . 87

tmap-package 3

tm_shape . 89
tm_symbols . 92
tm_text . 104
tm_view . 112
tm_xlab . 114
World . 115

Index 117

tmap-package Thematic Map Visualization

Description

Thematic maps are geographical maps in which spatial data distributions are visualized. This pack-
age offers a flexible, layer-based, and easy to use approach to create thematic maps, such as choro-
pleths and bubble maps. It is based on the grammar of graphics, and resembles the syntax of
ggplot2.

Details

This page provides a brief overview of all package functions. See vignette("tmap-getstarted")
for a short introduction with examples.

Quick plotting method

qtm Plot a thematic map
————————— —————————————————————————————————

Main plotting method

Shape specification:

tm_shape Specify a shape object
————————— —————————————————————————————————

Aesthetics base layers:

tm_polygons Create a polygon layer (with borders)
tm_symbols Create a layer of symbols
tm_lines Create a layer of lines
tm_raster Create a raster layer
tm_text Create a layer of text labels

../doc/tmap-getstarted.html

4 tmap-package

tm_basemap Create a layer of basemap tiles
tm_tiles Create a layer of overlay tiles

Aesthetics derived layers:

tm_fill Create a polygon layer (without borders)
tm_borders Create polygon borders
tm_bubbles Create a layer of bubbles
tm_squares Create a layer of squares
tm_dots Create a layer of dots
tm_markers Create a layer of markers
tm_iso Create a layer of iso/contour lines
tm_rgb Create a raster layer of an image
————————— —————————————————————————————————

Faceting (small multiples)

tm_facets Define facets
————————— —————————————————————————————————

Attributes:

tm_grid Create grid lines
tm_scale_bar Create a scale bar
tm_compass Create a map compass
tm_credits Create a text for credits
tm_logo Create a logo
tm_xlab and tm_ylab Create axis labels
tm_minimap Create a minimap (view mode only)
————————— —————————————————————————————————

Layout element:

tm_layout Adjust the layout (main function)
tm_legend Adjust the legend
tm_view Configure the interactive view mode
tm_style Apply a predefined style
tm_format Apply a predefined format
————————— —————————————————————————————————

Change options:

tmap-package 5

tmap_mode Set the tmap mode: "plot" or "view"
ttm Toggle between the modes
tmap_options Set global tmap options (from tm_layout, tm_view, and a couple of others)
tmap_style Set the default style
————————— —————————————————————————————————

Create icons:

tmap_icons Specify icons for markers or proportional symbols
————————— —————————————————————————————————

Output functions

print Plot in graphics device or view interactively in web browser or RStudio’s viewer pane
tmap_last Redraw the last map
tmap_leaflet Obtain a leaflet widget object
tmap_animation Create an animation
tmap_arrange Create small multiples of separate maps
tmap_save Save thematic maps (either as image or HTML file)
————————— —————————————————————————————————

Spatial datasets

World World country data (sf object of polygons)
NLD_prov Netherlands province data (sf object of polygons)
NLD_muni Netherlands municipal data (sf object of polygons)
metro Metropolitan areas (sf object of points)
rivers Rivers (sf object of lines)
land Global land cover (stars object)
————————— —————————————————————————————————

Author(s)

Martijn Tennekes <mtennekes@gmail.com>

References

Tennekes, M., 2018, tmap: Thematic Maps in R, Journal of Statistical Software, 84(6), 1-39,
doi: 10.18637/jss.v084.i06

https://doi.org/10.18637/jss.v084.i06

6 deprecated_functions

See Also

vignette("tmap-getstarted")

+.tmap Stacking of tmap elements

Description

The plus operator allows you to stack tmap-elements, and groups of tmap-elements.

Usage

S3 method for class 'tmap'
e1 + e2

Arguments

e1 first tmap-element

e2 second tmap-element

References

Tennekes, M., 2018, tmap: Thematic Maps in R, Journal of Statistical Software, 84(6), 1-39,
doi: 10.18637/jss.v084.i06

See Also

tmap-element and vignette("tmap-getstarted")

deprecated_functions Deprecated tmap functions

Description

Since version 2.0, tmap function names are prefixed with a tm_ or tmap_. Therefore, function
names used by tmap 1.x such as animation_tmap have been renamed to tmap_animation.

../doc/tmap-getstarted.html
https://doi.org/10.18637/jss.v084.i06
../doc/tmap-getstarted.html

land 7

Details

• animation_tmap: replaced by tmap_animation

• save_tmap: replaced by tmap_save

• style_catalogue: replaced by tmap_style_catalogue

• style_catalog: replaced by tmap_style_catalog

• last_map: replaced by tmap_last

• tm_style_white: replaced by tm_style("white")

• tm_style_gray: replaced by tm_style("gray")

• tm_style_grey: replaced by tm_style("grey")

• tm_style_natural: replaced by tm_style("natural")

• tm_style_cobalt: replaced by tm_style("cobalt")

• tm_style_col_blind: replaced by tm_style("col_blind")

• tm_style_albatross: replaced by tm_style("albatross")

• tm_style_beaver: replaced by tm_style("beaver")

• tm_style_bw: replaced by tm_style("bw")

• tm_style_classic: replaced by tm_style("classic")

• tm_format_World: replaced by tm_format("World")

• tm_format_World_wide: replaced by tm_format("World_wide")

• tm_format_NLD: replaced by tm_format("NLD")

• tm_format_NLD_wide: replaced by tm_format("NLD_wide")

• tm_format_Europe: not used anymore, since the dataset Europe is no longer maintained

• tm_format_Europe2: not used anymore, since the dataset Europe is no longer maintained

• tm_format_Europe_wide: not used anymore, since the dataset Europe is no longer main-
tained

land Spatial data of global land cover

Description

Spatial data of global land cover, percent tree cover, and elevation of class stars. Two attributes
in this object relates to global land cover. The cover layer classifies the status of land cover of the
whole globe into 20 categories, while the cover_cls layer uses 8 simplified categories. Percent Tree
Cover (trees) represents the density of trees on the ground, and the last attribute represents elevation.

Usage

data(land)

8 print.tmap

Details

Important: publication of these maps is only allowed when cited to Tateishi et al. (2014), and when
"Geospatial Information Authority of Japan, Chiba University and collaborating organizations." is
shown.

References

Production of Global Land Cover Data - GLCNMO2008, Tateishi, R., Thanh Hoan, N., Kobayashi,
T., Alsaaideh, B., Tana, G., Xuan Phong, D. (2014), Journal of Geography and Geology, 6 (3).

metro Spatial data of metropolitan areas

Description

Spatial data of metropolitan areas, of class sf. The data includes a population times series from
1950 to (forecasted) 2030. All metro areas with over 1 million inhabitants in 2010 are included.

Usage

data(metro)

Source

https://population.un.org/wup/

References

United Nations, Department of Economic and Social Affairs, Population Division (2014). World
Urbanization Prospects: The 2014 Revision, CD-ROM Edition.

print.tmap Draw thematic map

Description

Draw thematic map. If the tmap mode is set to "plot" (see tmap_mode), the map is plot in the cur-
rent graphics device. If the mode is set to "view", the map is shown interactively as an htmlwidget.

https://population.un.org/wup/

qtm 9

Usage

S3 method for class 'tmap'
print(
x,
vp = NULL,
return.asp = FALSE,
mode = getOption("tmap.mode"),
show = TRUE,
knit = FALSE,
options = NULL,
...

)

knit_print.tmap(x, ..., options = NULL)

Arguments

x tmap object. A tmap object is created with qtm or by stacking tmap-elements.

vp viewport to draw the plot in. This is particularly useful for insets.

return.asp Logical that determines whether the aspect ratio of the map is returned. In that
case, grid.newpage() will be called, but without plotting of the map. This is
used by tmap_save to determine the aspect ratio of the map.

mode the mode of tmap: "plot" (static) or "view" (interactive). See tmap_mode for
details.

show logical that determines whether to show to map. Obviously TRUE by default, but
show=FALSE can be useful for just obtaining the returned objects.

knit should knit_print be enabled, or the normal print function?

options options passed on to knitprint

... not used

Value

If mode=="plot", then a list is returned with the processed shapes and the metadata. If mode=="view",
a leaflet object is returned (see also tmap_leaflet)

qtm Quick thematic map plot

Description

Draw a thematic map quickly. This function is a convenient wrapper of the main plotting method
of stacking tmap-elements. Without arguments or with a search term, this functions draws an
interactive map.

10 qtm

Usage

qtm(
shp,
fill = NA,
symbols.size = NULL,
symbols.col = NULL,
symbols.shape = NULL,
dots.col = NULL,
text = NULL,
text.size = 1,
text.col = NA,
lines.lwd = NULL,
lines.col = NULL,
raster = NA,
borders = NA,
by = NULL,
scale = NA,
title = NA,
projection = NULL,
bbox = NULL,
basemaps = NA,
overlays = NA,
style = NULL,
format = NULL,
...

)

Arguments

shp One of

• shape object, which is an object from a class defined by the sf or stars
package. Objects from the packages sp and raster are also supported, but
discouraged.

• Not specified, i.e. qtm() is executed. In this case a plain interactive map is
shown.

• A OSM search string, e.g. qtm("Amsterdam"). In this case a plain inter-
active map is shown positioned according to the results of the search query
(from OpenStreetMap nominatim)

fill either a color to fill the polygons, or name of the data variable in shp to draw a
choropleth. Only applicable when shp contains polygons. Set fill = NULL to
draw only polygon borders. See also argument borders.

symbols.size either the size of the symbols or a name of the data variable in shp that specifies
the sizes of the symbols. See also the size argument of tm_symbols. Only
applicable when shp contains spatial points, lines, or polygons.

symbols.col either the color of the symbols or a name of the data variable in shp that specifies
the colors of the symbols. See also the col arugment of tm_symbols. Only
applicable when shp contains spatial points, lines, or polygons.

qtm 11

symbols.shape either the shape of the symbols or a name of the data variable in shp that specifies
the shapes of the symbols. See also the shape arugment of tm_symbols. Only
applicable when shp contains spatial points, lines, or polygons.

dots.col name of the data variable in shp for the dot map that specifies the colors of the
dots. If dots.col is specified instead symbols.col, dots instead of bubbles are
drawn (unless symbols.shape is specified).

text Name of the data variable that contains the text labels. Only applicable when
shp contains spatial points, lines, or polygons.

text.size Font size of the text labels. Either a constant value, or the name of a numeric data
variable. Only applicable when shp contains spatial points, lines, or polygons.

text.col name of the data variable in shp for the that specifies the colors of the text labels.
Only applicable when shp contains spatial points, lines, or polygons.

lines.lwd either a line width or a name of the data variable that specifies the line width.
Only applicable when shp contains spatial lines.

lines.col either a line color or a name of the data variable that specifies the line colors.
Only applicable when shp contains spatial lines.

raster either a color or a name of the data variable that specifices the raster colors.
Only applicable when shp is a spatial raster.

borders color of the polygon borders. Use NULL to omit the borders.

by data variable name by which the data is split, or a vector of two variable names
to split the data by two variables (where the first is used for the rows and the
second for the columns). See also tm_facets

scale numeric value that serves as the global scale parameter. All font sizes, symbol
sizes, border widths, and line widths are controlled by this value. The parame-
ters symbols.size, text.size, and lines.lwd can be scaled seperately with
respectively symbols.scale, text.scale, and lines.scale. See also

title main title. For legend titles, use X.style, where X is the layer name (see ...).

projection Either a crs object or a character value (PROJ.4 character string). By default,
the projection is used that is defined in the shp object itself.

bbox bounding box. Arugment passed on to tm_shape

basemaps name(s) of the provider or an URL of a tiled basemap. It is a shortcut to
tm_basemap. Set to NULL to disable basemaps. By default, it is set to the tmap
option basemaps.

overlays name(s) of the provider or an URL of a tiled overlay map. It is a shortcut to
tm_tiles.

style Layout options (see tm_layout) that define the style. See tmap_style for de-
tails.

format Layout options (see tm_layout) that define the format. See tmap_format for
details.

... arguments passed on to the tm_* functions. The prefix of these arguments should
be with the layer function name without "tm_" and a period. For instance,
the palette for polygon fill color is called fill.palette. The following pre-
fixes are supported: shape., fill., borders., polygons., symbols., dots.,

12 qtm

lines., raster., text., layout., grid., facets., and view.. Arguments
that have a unique name, i.e. that does not exist in any other layer function, e.g.
convert2density, can also be called without prefix.

Details

The first argument is a shape object (normally specified by tm_shape). The next arguments, from
fill to raster, are the aesthetics from the main layers. The remaining arguments are related to the
map layout. Any argument from any main layer function, such as tm_polygons, can be specified
(see ...). It is also possible to stack tmap-elements on a qtm plot. See examples.

By default, a scale bar is shown. This option can be set with tmap_options (argument qtm.scalebar).
A minimap is shown by default when qtm is called without arguments of with a search term. This
option can be set with tmap_options (argument qtm.minimap).

Value

tmap-element

References

Tennekes, M., 2018, tmap: Thematic Maps in R, Journal of Statistical Software, 84(6), 1-39,
doi: 10.18637/jss.v084.i06

See Also

vignette("tmap-getstarted")

Examples

data(World, rivers, metro)

just the map
qtm(World)

choropleth
qtm(World, fill = "economy", format = "World", style = "col_blind", projection = "+proj=eck4")

choropleth with more specifications
qtm(World, fill="HPI", fill.n = 9, fill.palette = "div",

fill.title = "Happy Planet Index", fill.id = "name",
style = "gray", format = "World", projection = "+proj=eck4")

this map can also be created with the main plotting method,
which is recommended in this case.
Not run:
tm_shape(World, projection = "+proj=eck4") +

tm_polygons("HPI", n = 9, palette = "div",
title = "Happy Planet Index", id = "name") +

tm_style("gray") +
tm_format("World")

End(Not run)

https://doi.org/10.18637/jss.v084.i06
../doc/tmap-getstarted.html

renderTmap 13

bubble map
Not run:
qtm(World, borders = NULL) +
qtm(metro, symbols.size = "pop2010",

symbols.title.size= "Metropolitan Areas",
symbols.id= "name",
format = "World")

End(Not run)

dot map
Not run:
current.mode <- tmap_mode("view")
qtm(metro, bbox = "China")
tmap_mode(current.mode) # restore mode

End(Not run)

Not run:
without arguments, a plain interactive map is shown (the mode is set to view)
qtm()

search query for OpenStreetMap nominatim
qtm("Amsterdam")

End(Not run)

renderTmap Wrapper functions for using tmap in shiny

Description

Use tmapOutput to create a UI element, and renderTmap to render the tmap map. To update
the map (more specifically, to add and remove layers) use tmapProxy. Adding layers is as usual,
removing layers can be done with the function tm_remove_layer.

Usage

renderTmap(expr, env = parent.frame(), quoted = FALSE)

tmapOutput(outputId, width = "100%", height = 400)

tmapProxy(mapId, session = shiny::getDefaultReactiveDomain(), x)

tm_remove_layer(zindex)

14 renderTmap

Arguments

expr A tmap object. A tmap object is created with qtm or by stacking tmap-elements.

env The environment in which to evaluate expr

quoted Is expr a quoted expression (with quote())? This is useful if you want to save an
expression in a variable

outputId Output variable to read from

width, height the width and height of the map

mapId single-element character vector indicating the output ID of the map to modify
(if invoked from a Shiny module, the namespace will be added automatically)

session the Shiny session object to which the map belongs; usually the default value will
suffice

x the tmap object that specifies the added and removed layers.

zindex the z index of the pane in which the layer is contained that is going to be re-
moved. It is recommended to specify the zindex for this layer when creating the
map (inside renderTmap).

Details

Two features from tmap are not (yet) supported in Shiny: small multiples (facets) and colored
backgrounds (argument bg.color of tm_layout). Workarounds for small multiples: create multiple
independent maps or specify as.layers = TRUE in tm_facets.

Examples

if (require("shiny")) {

data(World)
world_vars <- setdiff(names(World), c("iso_a3", "name", "sovereignt", "geometry"))

ui <- fluidPage(
tmapOutput("map"),
selectInput("var", "Variable", world_vars)
)

server <- function(input, output, session) {
output$map <- renderTmap({
tm_shape(World) +
tm_polygons(world_vars[1], zindex = 401)
})

observe({
var <- input$var
tmapProxy("map", session, {
tm_remove_layer(401) +
tm_shape(World) +
tm_polygons(var, zindex = 401)

rivers 15

})
})
}

app <- shinyApp(ui, server)
if (interactive()) app
}

rivers Spatial data of rivers

Description

Spatial data of rivers, of class sf

Usage

data(rivers)

Source

https://www.naturalearthdata.com

theme_ps ggplot2 theme for proportional symbols

Description

ggplot2 theme for proportional symbols. By default, this theme only shows the plotting area, so
without titles, axes, and legend

Usage

theme_ps(
base_size = 12,
base_family = "",
plot.axes = FALSE,
plot.legend = FALSE

)

Arguments

base_size base size
base_family base family
plot.axes should the axes be shown?
plot.legend should the legend(s) be shown?

https://www.naturalearthdata.com

16 tmap-element

tmap-element tmap element

Description

Building block for drawing thematic maps. All element functions have the prefix tm_.

Details

The fundamental, and hence required element is tm_shape, which specifies the shape object, and
also specifies the projection and bounding box.

The elements that serve as aesthetics layers are

Base layers:

tm_polygons Create a polygon layer (with borders)
tm_symbols Create a layer of symbols
tm_lines Create a layer of lines
tm_raster Create a raster layer
tm_text Create a layer of text labels
tm_basemap Create a layer of basemap tiles
tm_tiles Create a layer of overlay tiles

Derived layers:

tm_fill Create a polygon layer (without borders)
tm_borders Create polygon borders
tm_bubbles Create a layer of bubbles
tm_squares Create a layer of squares
tm_dots Create a layer of dots
tm_markers Create a layer of markers
tm_iso Create a layer of iso/contour lines
tm_rgb Create a raster layer of an image

The layers can be stacked by simply adding them with the + symbol. The combination of the
elements described above form one group. Multiple groups can be stacked. Each group should start
with tm_shape.

Attributes layers:

tm_grid Create grid lines
tm_scale_bar Create a scale bar
tm_compass Create a map compass
tm_credits Create a text for credits
tm_logo Create a logo

tmap_animation 17

tm_xlab and tm_ylab Create axis labels
tm_minimap Create a minimap (view mode only)

Layout element:

tm_layout Adjust the layout (main function)
tm_legend Adjust the legend
tm_view Configure the interactive view mode
tm_style Apply a predefined style
tm_format Apply a predefined format
————————— —————————————————————————————————

References

Tennekes, M., 2018, tmap: Thematic Maps in R, Journal of Statistical Software, 84(6), 1-39,
doi: 10.18637/jss.v084.i06

See Also

vignette("tmap-getstarted")

The examples in each of the element functions

tmap_animation Create animation

Description

Create a gif animation or video from a tmap plot.

Usage

tmap_animation(
tm,
filename = NULL,
width = NA,
height = NA,
dpi = NA,
delay = 40,
fps = NA,
loop = TRUE,
outer.margins = NA,
asp = NULL,
scale = NA,
restart.delay = NULL,
...

)

https://doi.org/10.18637/jss.v084.i06
../doc/tmap-getstarted.html

18 tmap_animation

Arguments

tm tmap or a list of tmap objects. If tm is a tmap object, facets should be created,
where nrow and ncol in tm_facets have to be set to 1 in order to create one map
per frame.

filename filename. If omitted (default), the animation will be shown in the viewer or
browser. If specified, it should be a gif file or a video file (i.e. mp4). The package
gifski is required to create a gif animation. The package av (which uses the
FFmpeg library) is required for video formats. The mp4 format is recommended
but many other video formats are supported, such as wmv, avi, and mkv.

width, height width and height of the animation file (in pixels). Required when tm is a list, and
recommended to specify in advance when tm is a tmap object. If not specified
in the latter case, it will be determined by the aspect ratio of the map.

dpi dots per inch. By default 100, but this can be set with the option output.dpi.animation
in tmap_options.

delay delay time between images (in 1/100th of a second). See also fps

fps frames per second, calculated as 100 / delay. If fps is specified, the delay will
be set to 100/fps.

loop logical that determined whether the animation is looped, or an integer value that
determines how many times the animation is looped.

outer.margins (passed on to tmap_save) overrides the outer.margins argument of tm_layout
(unless set to NA)

asp (passed on to tmap_save) if specified, it overrides the asp argument of tm_layout.
Tip: set to 0 if map frame should be placed on the edges of the image.

scale (passed on to tmap_save) overrides the scale argument of tm_layout (unless
set to NA)

restart.delay not used anymore

... arguments passed on to av_encode_video

Note

Not only tmap plots are supported, but any series of R plots.

Examples

Not run:
data(NLD_prov)

m1 <- tm_shape(NLD_prov) +
tm_polygons("yellow") +

tm_facets(along = "name")

tmap_animation(m1, delay=40)

data(World, metro)

m2 <- tm_shape(World, projection = "+proj=eck4", simplify = 0.5) +

tmap_arrange 19

tm_fill() +
tm_shape(metro) +

tm_bubbles(size = paste0("pop", seq(1970, 2030, by=10)),
col = "purple",
border.col = "black", border.alpha = .5,
scale = 2) +

tm_facets(free.scales.symbol.size = FALSE, nrow=1,ncol=1) +
tm_format("World")

tmap_animation(m2, delay=100, outer.margins = 0)

m3 <- lapply(seq(50, 85, by = 5), function(age) {
World$at_most <- World$life_exp <= age
World_sel <- World[which((World$life_exp <= age) & (World$life_exp > (age - 5))),]
tm_shape(World) +
tm_polygons("at_most", palette = c("gray95", "gold"), legend.show = FALSE) +
tm_shape(World_sel) +
tm_text("name", size = "AREA", root = 5, remove.overlap = TRUE) +
tm_layout(main.title = paste0("Life expectency at most ", age), frame = FALSE)
})

tmap_animation(m3, width = 1200, height = 600, delay = 100)

m4 <- tm_shape(World) +
tm_polygons() +
tm_shape(metro) +
tm_bubbles(col = "red") +
tm_text("name", ymod = -1) +
tm_facets(by = "name", free.coords = F, nrow = 1, ncol = 1) +
tm_layout(panel.show = FALSE, frame = FALSE)

tmap_animation(m4, filename = "World_cities.mp4",
width=1200, height = 600, fps = 2, outer.margins = 0)

End(Not run)

tmap_arrange Arrange small multiples in grid layout

Description

Arrange small multiples in a grid layout. Normally, small multiples are created by specifying mul-
tiple variables for one aesthetic or by specifying the by argument (see tm_facets). This function
can be used to arrange custom small multiples in a grid layout.

Usage

tmap_arrange(
...,
ncol = NA,

20 tmap_arrange

nrow = NA,
widths = NA,
heights = NA,
sync = FALSE,
asp = 0,
outer.margins = 0.02

)

knit_print.tmap_arrange(x, ..., options = NULL)

S3 method for class 'tmap_arrange'
print(x, knit = FALSE, ..., options = NULL)

Arguments

... tmap objects or one list of tmap objects. The number of multiples that can be
plot is limited (see details).

ncol number of columns

nrow number of rows

widths vector of column widths. It should add up to 1 and the length should be equal to
ncol

heights vector of row heights. It should add up to 1 and the length should be equal to
nrow

sync logical. Should the navigation in view mode (zooming and panning) be syn-
chronized? By default FALSE.

asp aspect ratio. The aspect ratio of each map. Normally, this is controlled by
the asp argument from tm_layout (also a tmap option). This argument will
overwrite it, unless set to NULL. The default value for asp is 0, which means that
the aspect ratio is adjusted to the size of the device divided by the number of
columns and rows. When asp is set to NA, which is also the default value for
tm_layout, the aspect ratio will be adjusted to the used shapes.

outer.margins outer.margins, numeric vector four or a single value. If defines the outer mar-
gins for each multiple. If will overwrite the outer.margins argument from
tm_layout, unless set to NULL.

x a tmap_arrange object (returned from tmap_arrange)

options options passed on to knitprint

knit should knit_print be enabled, or the normal print function?

Details

The global option tmap.limits controls the limit of the number of facets that are plotted. By de-
fault, tmap_options(tmap.limits=c(facets.view=4, facets.plot=64)). The maximum num-
ber of interactive facets is set to four since otherwise it may become very slow.

tmap_design_mode 21

Examples

Not run:
data(World)
w1 <- qtm(World, projection = "+proj=eck4", title="Eckert IV")
w2 <- qtm(World, projection = 3857, title="Mercator")
w3 <- qtm(World, projection = "+proj=gall", title="Gall stereographic")
w4 <- qtm(World, projection = "+proj=robin", title="Robinsin")

current.mode <- tmap_mode("plot")
tmap_arrange(w1, w2, w3, w4, widths = c(.25, .75))
tmap_mode(current.mode)

End(Not run)

tmap_design_mode Set the design mode

Description

When the so-called "design mode" is enabled, inner and outer margins, legend position, and aspect
ratio are shown explicitly in plot mode. Also, information about aspect ratios is printed in the
console. This function sets the global option ‘tmap.design.mode‘. It can be used as toggle function
without arguments.

Usage

tmap_design_mode(design.mode)

Arguments

design.mode logical value that determines the design mode. If omitted then the design mode
is toggled.

See Also

tmap_options

tmap_format Get or add format options

Description

Format options are tmap options that are shape dependent. With tmap_format() the predefined for-
mats can be retrieved. The values for a specific format can be retrieved with tmap_format(format),
where format is the name of the format. The function tmap_format_add is used to add a format.

22 tmap_grob

Usage

tmap_format(format)

tmap_format_add(..., name)

Arguments

format name of the format. Run tmap_format() to see the choices.

... options from tm_layout or tm_view. Can also be a list of those options.

name name of the new format.

Value

the function tmap_format() returns the names of the available formats. When format is defined,
it returns the option list corresponding the that format.

See Also

tm_layout for predefined styles, tmap_style_catalogue to create a style catalogue of all available
styles, and tmap_options for tmap options.

tmap_options for tmap options

Examples

available formats
tmap_format()

create option list to be used as a new format
World_small <- tmap_format("World")
World_small$scale <- 2

add format
tmap_format_add(World_small, name = "World_small")

observe that World_small is successfully added:
tmap_format()

data(World)

qtm(World, fill="HPI", format="World_small")

tmap_grob Export to grob object

Description

Export a tmap plot object to a grob object (from the grid package).

tmap_icons 23

Usage

tmap_grob(tm)

Arguments

tm tmap object

Value

A grob object when one page is generated, or a list of grob objects when multiple pages are gener-
ated.

Examples

Not run:

data(World)
m <- tm_shape(World) +
tm_fill("well_being", id="name", title="Well-being")

grb = tmap_grob(m)

library(grid)

grid.newpage()
pushViewport(viewport(x = 0.1, y = 0.1, width = 0.2, height = 0.2))
grid.draw(grb)
upViewport()
pushViewport(viewport(x = 0.6, y = 0.6, width = 0.8, height = 0.8))
grid.draw(grb)

End(Not run)

tmap_icons Specify icons

Description

Specifies icons from a png images, which can be used as markers in thematic maps. The function
marker_icon is the specification of the default marker.

Usage

tmap_icons(
file,
width = 48,
height = 48,
keep.asp = TRUE,

24 tmap_last

just = c("center", "center"),
as.local = TRUE,
...

)

marker_icon()

Arguments

file character value/vector containing the file path(s) or url(s).

width width of the icon. If keep.asp, this is interpreted as the maximum width.

height height of the icon. If keep.asp, this is interpreted as the maximum height.

keep.asp keep the aspect ratio of the png image. If TRUE and the aspect ratio differs from
width/height either width or height is adjusted accordingly.

just justification of the icons relative to the point coordinates. The first value spec-
ifies horizontal and the second value vertical justification. Possible values are:
"left" , "right", "center", "bottom", and "top". Numeric values of 0
specify left alignment and 1 right alignment. The default value of just is
c("center", "center").

as.local if the file is a url, should it be saved to local temporary file?

... arguments passed on to icons. When iconWidth, iconHeight, iconAnchorX
and iconAnchorY are specified, they override width and height, and just.

Value

icon data (see icons)

See Also

tm_symbols

tmap_last Retrieve the last map to be modified or created

Description

Retrieve the last map to be modified or created. Works in the same way as ggplot2’s last_plot,
although there is a difference: last_map returns the last call instead of the stacked tmap-elements.

Usage

tmap_last()

Value

call

tmap_leaflet 25

See Also

tmap_save

tmap_leaflet Create a leaflet widget from a tmap object

Description

Create a leaflet widget from a tmap object. An interactive map (see tmap_mode) is an automatically
generated leaflet widget. With this function, this leaflet widget is obtained, which can then be
changed or extended by using leaflet’s own methods.

Usage

tmap_leaflet(
x,
mode = "view",
show = FALSE,
add.titles = TRUE,
in.shiny = FALSE,
...

)

Arguments

x tmap object. A tmap object is created with qtm or by stacking tmap-elements.

mode the mode of tmap, which is set to "view" in order to obtain the leaflet object.
See tmap_mode for details.

show should the leaflet map be shown? FALSE by default

add.titles add titles to leaflet object

in.shiny is the leaflet output going to be used in shiny? If so, two features are not sup-
ported and therefore disabled: facets and colored backgrounds.

... arguments passed on to print.tmap

Value

leaflet object

See Also

tmapOutput for tmap in Shiny, tmap_mode, tm_view, print.tmap

26 tmap_mode

Examples

world choropleth/bubble map of the world
data(World, metro)
metro$growth <- (metro$pop2020 - metro$pop2010) / (metro$pop2010 * 10) * 100

map1 <- tm_shape(metro) +
tm_bubbles("pop2010", col = "growth",

border.col = "black", border.alpha = .5,
style="fixed", breaks=c(-Inf, seq(0, 6, by=2), Inf),
palette="-RdYlBu", contrast=1,
title.size="Metro population",
title.col="Growth rate (%)", id="name") +

tm_layout(legend.bg.color = "grey90", legend.bg.alpha=.5, legend.frame=TRUE)

lf <- tmap_leaflet(map1)

show leaflet widget
lf

add marker
require(leaflet)
lf %>% leaflet::addMarkers(2.2945, 48.8582, popup = "Eiffel tower")

Not run:
alternative
eiffelTower <- geocode_OSM("Eiffel Tower, Paris", as.SPDF = TRUE)

map1 +
tm_shape(eiffelTower) +
tm_markers()

End(Not run)

tmap_mode Set tmap mode to static plotting or interactive viewing

Description

Set tmap mode to static plotting or interactive viewing. The global option tmap.mode determines
the whether thematic maps are plot in the graphics device, or shown as an interactive leaflet map (see
also tmap_options. The function tmap_mode is a wrapper to set this global option. The convenient
function ttm, which stands for toggle thematic map, is a toggle switch between the two modes. The
function ttmp stands for toggle thematic map and print last map: it does the same as ttm followed
by tmap_last; in order words, it shows the last map in the other mode. It is recommended to use
tmap_mode in scripts and ttm/ttmp in the console.

tmap_mode 27

Usage

tmap_mode(mode = c("plot", "view"))

ttm()

ttmp()

Arguments

mode one of

"plot" Thematic maps are shown in the graphics device. This is the default
mode, and supports all tmap’s features, such as small multiples (see tm_facets)
and extensive layout settings (see tm_layout). It is recommended for sav-
ing static maps (see tmap_save).

"view" Thematic maps are viewed interactively in the web browser or RStu-
dio’s Viewer pane. Maps are fully interactive with tiles from OpenStreetMap
or other map providers (see tm_tiles). See also tm_view for options re-
lated to the "view" mode. This mode generates a leaflet widget, which
can also be directly obtained with tmap_leaflet. With RMarkdown, it is
possible to publish it to an HTML page. There are a couple of constraints
in comparison to "plot":

• The map is always projected according to the Web Mercator projection.
Although this projection is the de facto standard for interactive web-
based mapping, it lacks the equal-area property, which is important
for many thematic maps, especially choropleths (see examples from
tm_shape).

• Small multiples are not supported
• The legend cannot be made for aesthetics regarding size, which are

symbol size and line width.
• Text labels are not supported (yet)
• The layout options set with tm_layout) regarding map format are not

used. However, the styling options still apply.

Value

the mode before changing

References

Tennekes, M., 2018, tmap: Thematic Maps in R, Journal of Statistical Software, 84(6), 1-39,
doi: 10.18637/jss.v084.i06

See Also

vignette("tmap-getstarted"), tmap_last to show the last map, tm_view for viewing options,
and tmap_leaflet for obtaining a leaflet widget, and tmap_options for tmap options.

https://doi.org/10.18637/jss.v084.i06
../doc/tmap-getstarted.html

28 tmap_options

Examples

world choropleth/bubble map of the world
data(World, metro)
metro$growth <- (metro$pop2020 - metro$pop2010) / (metro$pop2010 * 10) * 100

map1 <- tm_shape(World) +
tm_polygons("income_grp", palette="-Blues", contrast=.7, id="name", title="Income group") +
tm_shape(metro) +
tm_bubbles("pop2010", col = "growth",
border.col = "black", border.alpha = .5,
style="fixed", breaks=c(-Inf, seq(0, 6, by=2), Inf),
palette="-RdYlBu", contrast=1,
title.size="Metro population",
title.col="Growth rate (%)", id="name",
popup.vars = c("pop2010", "pop2020", "growth")) +
tm_layout(legend.bg.color = "grey90", legend.bg.alpha=.5, legend.frame=TRUE)

initial mode: "plot"
current.mode <- tmap_mode("plot")

plot map
map1

switch to other mode: "view"
ttm()

view map
map1

Not run:
choropleth of the Dutch population in interactive mode:
require(tmaptools)
data(NLD_muni, NLD_prov)
NLD_muni$pop_dens <- calc_densities(NLD_muni, var = "population")

tm_shape(NLD_muni) +
tm_fill(col="pop_dens",
style="kmeans",
title = "Population (per km^2)", id = "name") +
tm_borders("grey25", alpha=.5) +
tm_shape(NLD_prov) +
tm_borders("grey40", lwd=2)

End(Not run)

restore current mode
tmap_mode(current.mode)

tmap_options Options for tmap

tmap_options 29

Description

Get or set global options for tmap. The behaviour of tmap_options is similar to options: all
tmap options are retrieved when this function is called without arguments. When arguments are
specified, the corresponding options are set, and the old values are silently returned as a list. The
function tmap_options_reset is used to reset all options back to the default values (also the style
is reset to "white"). Differences with the default values can be shown with tmap_options_diff.
The function tmap_options_save can be used to save the current options as a new style. See details
below on how to create a new style.

Usage

tmap_options(
...,
unit,
limits,
max.categories,
max.raster,
basemaps,
basemaps.alpha,
overlays,
overlays.alpha,
qtm.scalebar,
qtm.minimap,
qtm.mouse.coordinates,
show.messages,
show.warnings,
output.format,
output.size,
output.dpi,
output.dpi.animation,
design.mode = NULL,
check.and.fix

)

tmap_options_diff()

tmap_options_reset()

tmap_options_save(style)

Arguments

... options from tm_layout or tm_view. Note that the difference with using tm_layout
or tm_view directly, is that options set with tmap_options remain for the entire
session (unless changed with tmap_options or tmap_style). It can also be a
single unnamed argument which is a named list of options (similar behaviour as
options).

30 tmap_options

unit this is the default value for the unit argument of tm_shape. It specifies the unit
of measurement, which is used in the scale bar and the calculation of density
values. By default (when loading the package), it is "metric". Other valid
values are "imperial", "km", "m", "mi", and "ft".

limits this option determines how many facets (small multiples) are allowed for per
mode. It should be a vector of two numeric values named facets.view and
facets.plot. By default (i.e. when loading the package), it is set to c(facets.view
= 4, facets.plot = 64)

max.categories in case col is the name of a categorical variable in the layer functions (e.g.
tm_polygons), this value determines how many categories (levels) it can have
maximally. If the number of levels is higher than max.categories, then levels
are combined.

max.raster the maximum size of rasters, in terms of number of raster cells. It should be
a vector of two numeric values named plot and view, which determines the
size in plotting and viewing mode. The default values are c(plot = 1e7, view
= 1e6). Rasters that are larger will be shown at a decreased resolution.

basemaps default basemaps. Basemaps are normally configured with tm_basemap. When
this is not done, the basemaps specified by this option are shown (in view mode).
Vector of one or more names of baselayer maps, or NULL if basemaps should be
omitted. For options see the list leaflet::providers, which can be previewed
at https://leaflet-extras.github.io/leaflet-providers/preview/. Also
supports URL’s for tile servers, such as "https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png".
If a named vector is provided, the names are used in the layer control legend
(similar to the group argument of tm_basemap. See also overlays, which is
the default option for overlay tiles.

basemaps.alpha default transparency (opacity) value for the basemaps. Can be a vector of values,
one for each basemap.

overlays default overlay tilemaps. Overlays tilemaps are shown as front layer (in contrast
to basemaps, which are background layers), so they are only useful when they
are semi-transparent. Like basemaps, a vector of tilemaps is expected, or NULL
is overlays should be omitted.

overlays.alpha default transparency (opacity) value for the overlay maps. Can be a vector of
values, one for each overlay map.

qtm.scalebar should a scale bar be added to interactive maps created with qtm. In other words,
should tm_scale_bar() be added automatically? The value NA means that the
scale bar is only added when qtm is called without arguments or with a search
term. The default value is TRUE.

qtm.minimap should a minimap be added to interactive maps created with qtm. In other words,
should tm_minimap() be added automatically? The default value is FALSE.

qtm.mouse.coordinates

should mouse coordinates (and zoom level) be shown in view mode with qtm? In
other words, should tm_mouse_coordinates() be added automatically? TRUE
by default.

show.messages should messages be shown?

show.warnings should warnings be shown?

https://leaflet-extras.github.io/leaflet-providers/preview/

tmap_options 31

output.format The format of the static maps saved with tmap_save without specification of the
filename. The default is "png".

output.size The size of the static maps saved with tmap_save without specification of width
and height. The unit is squared inch and the default is 49. This means that
square maps (so with aspect ratio 1) will be saved as 7 by 7 inch images and a
map with aspect ratio 2 (e.g. most world maps) will be saved as approximately
10 by 5 inch.

output.dpi The default number of dots per inch for tmap_save.
output.dpi.animation

The default number of dots per inch for tmap_animation.

design.mode Not used anymore; the design mode can now be set with tmap_design_mode

check.and.fix Logical that determines whether shapes (sf objects) are checked for validity
with st_is_valid and fixed with st_make_valid if needed.

style style name

Details

The options can be divided into three parts: one part contains the arguments from tm_layout, one
part contains the arguments from tm_view, and one part contains options that can only be set with
tmap_options. Observe that the options from tm_layout and tm_view can also be set with those
functions. It is recommended to use tmap_options when setting specific options during global
session. However, options that are only relevant for a specific map can better be set with tm_layout
or tm_view.

A new style can be created in two ways. The first approach is to use the function tmap_options_save,
which takes a snapshot of the current tmap options. E.g., tmap_options_save("my_style") will
save the current tmap options as a style called "my_style". See the examples in which a style
called "red" is created. The second way to create a style is to create a list with tmap options and
with a attribute called style. This approach is illustrated in the last example, in which a style called
"black" is created.

The newly created style, say "my_style", will be accessible globally via tmap_style("my_style")
and + tm_style("my_style") until the R session is restarted or tmap is reloaded. In order to save
the style for future use or sharing, obtain the option list as follows: my_style <- tmap_options()
and save the object my_style in the usual way. Next time, the style can be loaded simply by run-
ning tmap_options(my_style), which corresponds to the second way to create a style (see the
paragraph above).

See Also

tm_layout, tm_view, and tmap_style

Examples

load data
data(World)

get current options
str(tmap_options())

32 tmap_options

get current style
tmap_style()

plot map (with default options)
tm_shape(World) + tm_polygons("HPI")

change style to cobalt
tmap_style("cobalt")

observe the changed options
tmap_options_diff()

plot the map again
tm_shape(World) + tm_polygons("HPI")

##############################
define red style
##############################

change the background color
tmap_options(bg.color = "red")

note that the current style is modified
tmap_style()

observe the changed options
tmap_options_diff()

save the current options as style "red"
tmap_options_save("red")

plot the map again
tm_shape(World) + tm_polygons("HPI")

the specified arguments of tm_layout and tm_view will override the options temporarily:
tm_shape(World) + tm_polygons("HPI") + tm_layout(bg.color="purple")

when tm_style_ is called, it will override all options temporarily:
tm_shape(World) + tm_polygons("HPI") + tm_layout(bg.color="purple") + tm_style("classic")

reset all options
tmap_options_reset()

check style and options
tmap_style()
tmap_options_diff()

##############################
define black style
##############################

create style list with style attribute

tmap_save 33

black_style <- structure(
list(

bg.color = "black",
aes.color = c(fill = "grey40", borders = "grey40",

symbols = "grey80", dots = "grey80",
lines = "white", text = "white",

na = "grey30", null = "grey15"),
aes.palette = list(seq = "plasma", div = "PiYG", cat = "Dark2"),
attr.color = "white",
panel.label.color = "white",
panel.label.bg.color = "grey40",
main.title.color = "white"
),
style = "black"
)

assign the style
tmap_options(black_style)

observe that "black" is a new style
tmap_style()

plot the world map again, this time with the newly created black style
tm_shape(World) +
tm_polygons("HPI")

reset all options
tmap_options_reset()

tmap_save Save tmap

Description

Save tmap to a file. This can be either a static plot (e.g. png) or an interactive map (html).

Usage

tmap_save(
tm = NULL,
filename = NA,
device = NULL,
width = NA,
height = NA,
units = NA,
dpi = NA,
outer.margins = NA,
asp = NULL,
scale = NA,

34 tmap_save

insets_tm = NULL,
insets_vp = NULL,
add.titles = TRUE,
in.iframe = FALSE,
selfcontained = !in.iframe,
verbose = NULL,
...

)

Arguments

tm tmap object

filename filename including extension, and optionally the path. The extensions pdf, eps,
svg, wmf (Windows only), png, jpg, bmp, tiff, and html are supported. If the
extension is missing, the file will be saved as a static plot in "plot" mode and as
an interactive map (html) in "view" mode (see details). The default format for
static plots is png, but this can be changed using the option "output.format"
in tmap_options. If NA (the default), the file is saved as "tmap01" in the default
format, and the number incremented if the file already exists.

device graphic device to use. Either a device function (e.g., png or cairo_pdf) or a text
indicating selected graphic device: "pdf", "eps", "svg", "wmf" (Windows only),
"png", "jpg", "bmp", "tiff". If NULL, the graphic device is guessed based on the
filename argument.

height, width The width and height of the plot (not applicable for html files). Units are set
with the argument units. If one of them is not specified, this is calculated using
the formula asp = width / height, where asp is the estimated aspect ratio of the
map. If both are missing, they are set such that width * height is equal to the
option "output.size" in tmap_options. This is by default 49, meaning that is
the map is a square (so aspect ratio of 1) both width and height are set to 7.

units units for width and height ("in", "cm", or "mm"). By default, pixels ("px") are
used if either width or height is set to a value greater than 50. Else, the units are
inches ("in")

dpi dots per inch. Only applicable for raster graphics. By default it is set to 300, but
this can be changed using the option "output.dpi" in tmap_options.

outer.margins overrides the outer.margins argument of tm_layout (unless set to NA)

asp if specified, it overrides the asp argument of tm_layout. Tip: set to 0 if map
frame should be placed on the edges of the image.

scale overrides the scale argument of tm_layout (unless set to NA)

insets_tm tmap object of an inset map, or a list of tmap objects of multiple inset maps. The
number of tmap objects should be equal to the number of viewports specified
with insets_vp.

insets_vp viewport of an inset map, or a list of viewports of multiple inset maps. The
number of viewports should be equal to the number of tmap objects specified
with insets_tm.

add.titles add titles to leaflet object

tmap_save 35

in.iframe should an interactive map be saved as an iframe? If so, two HTML files will
be saved; one small parent HTML file with the iframe container, and one large
child HTML file with the actual widget. See saveWidgetframe for details. By
default FALSE which means that one large HTML file is saved (see saveWidget).

selfcontained when an interactive map is saved, should the resources (e.g. Javascript libraries)
be contained in the HTML file? If FALSE, they are placed in an adjacent di-
rectory (see also saveWidget). Note that the HTML file will often still be
large when selfcontained = FALSE, since the map data (polygons and pop-
ups), which are also contained in the HTML file, usually take more space then
the map resources.

verbose Deprecated. It is now controlled by the tmap option show.messages (see tmap_options)

... arguments passed on to device functions or to saveWidget or saveWidgetframe

Examples

Not run:
data(NLD_muni, NLD_prov)
m <- tm_shape(NLD_muni) +

tm_fill(col="population", convert2density=TRUE,
style="kmeans",
title=expression("Population (per " * km^2 * ")")) +

tm_borders("black", alpha=.5) +
tm_shape(NLD_prov) +

tm_borders("grey25", lwd=2) +
tm_style("classic") +
tm_format("NLD", inner.margins = c(.02, .15, .06, .15)) +

tm_scale_bar(position = c("left", "bottom")) +
tm_compass(position=c("right", "bottom"))

tmap_save(m, "choropleth.png", height = 7) # height interpreted in inches
tmap_save(m, "choropleth_icon.png", height = 100, scale = .1) # height interpreted in pixels

data(World)
m2 <- tm_shape(World) +
tm_fill("well_being", id="name", title="Well-being") +
tm_format("World")

save image
tmap_save(m2, "World_map.png", width=1920, height=1080, asp=0)

cut left inner margin to make sure Antarctica is snapped to frame
tmap_save(m2 + tm_layout(inner.margins = c(0, -.1, 0.05, 0.01)),

"World_map2.png", width=1920, height=1080, asp=0)

save interactive plot
tmap_save(m2, "World_map.html")

End(Not run)

36 tmap_style

tmap_style Set or get the default tmap style

Description

Set or get the default tmap style. Without arguments, the current style is returned. Also the available
styles are displayed. When a style is set, the corresponding tmap options (see tmap_options) will
be set accordingly. The default style (i.e. when loading the package) is "white".

Usage

tmap_style(style)

Arguments

style name of the style. When omitted, tmap_style returns the current style and also
shows all available styles. When the style is specified, tmap_style sets the style
accordingly. Note that in that case, all tmap options (see tmap_options) will be
reset according to the style definition. See tm_layout for predefined styles, and
tmap_style_catalogue for creating a catalogue.

Details

Note that tm_style is used within a plot call (so it only affects that plot), whereas tmap_style sets
the style globally.

After loading a style, the options that defined this style (i.e. the difference with the default "white"
style) can be obtained by tmap_options_diff.

The documentation of tmap_options (details and the examples) shows how a new style is created.

Value

the style before changing

See Also

tmap_options for tmap options, and tmap_style_catalogue to create a style catalogue of all
available styles.

Examples

data(World)

current.style <- tmap_style("classic")
qtm(World, fill="life_exp", fill.title="Life expectancy")

tmap_style("cobalt")
qtm(World, fill="life_exp", fill.title="Life expectancy")

tmap_style_catalogue 37

restore current style
tmap_style(current.style)

tmap_style_catalogue Create a style catalogue

Description

Create a style catalogue for each predefined tmap style. The result is a set of png images, one for
each style.

Usage

tmap_style_catalogue(path = "./tmap_style_previews", styles = NA)

tmap_style_catalog(path = "./tmap_style_previews", styles = NA)

Arguments

path path where the png images are stored

styles vector of styles function names (see tmap_style) for which a preview is gener-
ated. By default, a preview is generated for all loaded styles.

tmap_tip Get a tip about tmap

Description

Generates a tip with an example. The tip and example code are printed, and the example itself is
executed.

Usage

tmap_tip(from.version = NULL)

Arguments

from.version version number. Only tips regarding features from this version are shown.

Examples

tmap_tip()
tmap_tip(from.version = "3.0")

38 tm_add_legend

tm_add_legend Add manual legend

Description

Creates a tmap-element that adds a manual legend.

Usage

tm_add_legend(
type = c("fill", "symbol", "text", "line", "title"),
labels = NULL,
col = NULL,
size = NULL,
shape = NULL,
lwd = NULL,
lty = NULL,
text = NULL,
alpha = NA,
border.col = "black",
border.lwd = 1,
border.alpha = NA,
title = "",
is.portrait = TRUE,
legend.format = list(),
reverse = FALSE,
z = NA,
zindex = NA,
group = NULL

)

Arguments

type type of legend. One of "fill", "symbol", "text", "line", or "title". The
last option only displays a title.

labels legend labels

col legend colors

size legend symbol sizes (if type=="symbol"). See example how to replicate the
sizes of symbols created with tm_symbols. If not specified, the symbols will
have the same size as when calling tm_symbols without specifying the size
argument.

shape legend symbol shapes (if type=="symbol")

lwd legend line widths (if type=="line")

lty legend line types (if type=="line")

text legend texts (if type=="text")

tm_add_legend 39

alpha legend fill transparency

border.col legend border col (if type is "fill" or "symbol")

border.lwd legend border width (if type is "fill" or "symbol")

border.alpha legend border alpha (if type is "fill" or "symbol")

title legend title

is.portrait is legend portrait (TRUE) or landscape (FALSE)?

legend.format options to format the legend, see tm_symbols (the description of the argument
legend.format) for details. Note that many of these arguments are not appli-
cable for tm_add_legend since labels should be a character vector. However,
some options could still be handy, e.g. list(text.align = "right").

reverse are the legend items reversed (by default FALSE)?

z legend stack position

zindex zindex of the pane in view mode to which the legend belongs (if any).

group name of the group to which this layer belongs in view mode. Each group can be
selected or deselected in the layer control item. By default NULL, which means
that the legend will not be shown in the layer control item.

See Also

tm_symbols for another example

Examples

This example adds a manual legend that combines the tm_symbols color and size legend.
Not run:
data(World)
data(metro)

legend bubble size (10, 20, 30, 40 million) are
- are normlized by upper limit (40e6),
- square rooted (see argument perceptual of tm_symbols), and
- scaled by 2:
bubble_sizes <- ((c(10, 20, 30, 40) * 1e6) / 40e6) ^ 0.5 * 2

tm_shape(World) +
tm_polygons() +
tm_shape(metro) +
tm_symbols(col='pop2020',
breaks = c(0, 15, 25, 35, 40) * 1e6,
n=4,
palette = 'YlOrRd',
size='pop2020',
sizes.legend = c(10, 20, 30, 40) * 1e6,
size.lim = c(0, 40e6),
scale = 2,
legend.size.show = FALSE, # comment this line to see the original size legend
legend.col.show = FALSE, # comment this line to see the original color legend
legend.size.is.portrait = TRUE) +

40 tm_basemap

tm_add_legend('symbol',
col = RColorBrewer::brewer.pal(4, "YlOrRd"),
border.col = "grey40",
size = bubble_sizes,
labels = c('0-15 mln','15-25 mln','25-35 mln','35-40 mln'),
title="Population Estimate")

End(Not run)

See also the documentation of tm_symbols for another example

tm_basemap Draw a tile layer

Description

Creates a tmap-element that draws a tile layer. This feature is only available in view mode. For
plot mode, a tile image can be retrieved by read_osm. The function tm_basemap draws the tile layer
as basemap (i.e. as bottom layer), whereas tm_tiles draws the tile layer as overlay layer (where
the stacking order corresponds to the order in which this layer is called). Note that basemaps are
shown by default (see details).

Usage

tm_basemap(server = NA, group = NA, alpha = NA, tms = FALSE)

tm_tiles(server, group = NA, alpha = 1, zindex = NA, tms = FALSE)

Arguments

server name of the provider or an URL. The list of available providers can be obtained
with providers (tip: in RStudio, type providers$ to see the options). See
https://leaflet-extras.github.io/leaflet-providers/preview/ for a
preview of those. When a URL is provided, it should be in template format, e.g.
"https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png". Use NULL in
tm_basemap to disable the basemaps.

group name of the group to which this layer belongs in view mode. Each group can
be selected or deselected in the layer control item. Set group = NULL to hide the
layer in the layer control item. By default, it will be set to the name of the shape
(specified in tm_shape). Tile layers generated with tm_basemap will be base
groups whereas tile layers generated with tm_tiles will be overlay groups.

alpha alpha

tms is the provided tile server defined according to the TMS protocol? By default
FALSE.

https://leaflet-extras.github.io/leaflet-providers/preview/

tm_compass 41

zindex zindex of the pane in view mode. By default, it is set to the layer number plus
400. By default, the tmap layers will therefore be placed in the custom panes
"tmap401", "tmap402", etc., except for the base tile layers, which are placed in
the standard "tile". This parameter determines both the name of the pane and
the z-index, which determines the pane order from bottom to top. For instance,
if zindex is set to 500, the pane will be named "tmap500".

Details

When tm_basemap is not specified, the default basemaps are shown, which can be configured by
the basemaps arugument in tmap_options. By default (for style "white") three basemaps are
drawn: c("Esri.WorldGrayCanvas", "OpenStreetMap", "Esri.WorldTopoMap"). To disable
basemaps, add tm_basemap(NULL) to the plot, or set tmap_options(basemaps = NULL). Simi-
larly, when tm_tiles is not specified, the overlay maps specified by the overlays argument in
in tmap_options are shown as front layer. By default, this argument is set to NULL, so no overlay
maps are shown by default. See examples.

Examples

Not run:
current.mode <- tmap_mode("view")

data(World, metro)

tm_basemap(leaflet::providers$Stamen.Watercolor) +
tm_shape(metro, bbox = "India") + tm_dots(col = "red", group = "Metropolitan areas") +
tm_tiles(paste0("http://services.arcgisonline.com/arcgis/rest/services/Canvas/",

"World_Light_Gray_Reference/MapServer/tile/{z}/{y}/{x}"), group = "Labels")

Use tmap options to set the basemap and overlay map permanently during the R session:
opts <- tmap_options(basemaps = c(Canvas = "Esri.WorldGrayCanvas", Imagery = "Esri.WorldImagery"),

overlays = c(Labels = paste0("http://services.arcgisonline.com/arcgis/rest/services/Canvas/",
"World_Light_Gray_Reference/MapServer/tile/{z}/{y}/{x}")))

qtm(World, fill = "HPI", fill.palette = "RdYlGn")

restore options
tmap_options(opts)

restore current mode
tmap_mode(current.mode)

End(Not run)

tm_compass Map compass

42 tm_compass

Description

Creates a map compass.

Usage

tm_compass(
north = 0,
type = NA,
text.size = 0.8,
size = NA,
show.labels = 1,
cardinal.directions = c("N", "E", "S", "W"),
text.color = NA,
color.dark = NA,
color.light = NA,
lwd = 1,
position = NA,
bg.color = NA,
bg.alpha = NA,
just = NA,
fontsize = NULL

)

Arguments

north north direction in degrees: 0 means up, 90 right, etc.

type compass type, one of: "arrow", "4star", "8star", "radar", "rose". The
default is controlled by tm_layout (which uses "arrow" for the default style)

text.size relative font size

size size of the compass in number of text lines. The default values depend on the
type: for "arrow" it is 2, for "4star" and "8star" it is 4, and for "radar" and
"rose" it is 6.

show.labels number that specifies which labels are shown: 0 means no labels, 1 (default)
means only north, 2 means all four cardinal directions, and 3 means the four
cardinal directions and the four intercardinal directions (e.g. north-east).

cardinal.directions

labels that are used for the cardinal directions north, east, south, and west.

text.color color of the text. By default equal to the argument attr.color of tm_layout.

color.dark color of the dark parts of the compass, typically (and by default) black.

color.light color of the light parts of the compass, typically (and by default) white.

lwd line width of the compass

position position of the compass. Vector of two values, specifying the x and y coordi-
nates. Either this vector contains "left", "LEFT", "center", "right", or "RIGHT"
for the first value and "top", "TOP", "center", "bottom", or "BOTTOM" for the
second value, or this vector contains two numeric values between 0 and 1 that

tm_credits 43

specifies the x and y value of the left bottom corner of the compass. The up-
percase values correspond to the position without margins (so tighter to the
frame). The default value is controlled by the argument "attr.position" of
tm_layout.

bg.color Background color

bg.alpha Transparency of the background color. Number between 0 (totally transparent)
and 1 (not transparent). By default, the alpha value of the bg.color is used
(normally 1).

just Justification of the attribute relative to the point coordinates. The first value
specifies horizontal and the second value vertical justification. Possible values
are: "left" , "right", "center", "bottom", and "top". Numeric values of
0 specify left/bottom alignment and 1 right/top alignment. This option is only
used, if position is specified by numeric coordinates. The default value is
controlled by the argument "attr.just" of tm_layout.

fontsize deprecated: renamed to text.size

Examples

current.mode <- tmap_mode("plot")

data(NLD_muni)

qtm(NLD_muni, theme = "NLD") + tm_compass()
qtm(NLD_muni, theme = "NLD") + tm_compass(type="radar", position=c("left", "top"), show.labels = 3)

restore current mode
tmap_mode(current.mode)

tm_credits Credits text

Description

Creates a text annotation that could be used for credits or acknowledgements.

Usage

tm_credits(
text,
size = 0.7,
col = NA,
alpha = NA,
align = "left",
bg.color = NA,
bg.alpha = NA,
fontface = NA,
fontfamily = NA,

44 tm_credits

position = NA,
width = NA,
just = NA

)

Arguments

text text. Multiple lines can be created with the line break symbol "\n". Facets can
have different texts: in that case a vector of characters is required. Use "" to
omit the credits for specific facets.

size relative text size

col color of the text. By default equal to the argument attr.color of tm_layout.

alpha transparency number between 0 (totally transparent) and 1 (not transparent). By
default, the alpha value of col is used (normally 1).

align horizontal alignment: "left" (default), "center", or "right". Only applicable
if text contains multiple lines

bg.color background color for the text

bg.alpha Transparency number between 0 (totally transparent) and 1 (not transparent).
By default, the alpha value of the bg.color is used (normally 1).

fontface font face of the text. By default, determined by the fontface argument of tm_layout.

fontfamily font family of the text. By default, determined by the fontfamily argument of
tm_layout.

position position of the text. Vector of two values, specifying the x and y coordinates.
Either this vector contains "left", "LEFT", "center", "right", or "RIGHT" for the
first value and "top", "TOP", "center", "bottom", or "BOTTOM" for the second
value, or this vector contains two numeric values between 0 and 1 that specifies
the x and y value of the center of the text. The uppercase values correspond
to the position without margins (so tighter to the frame). The default value is
controlled by the argument "attr.position" of tm_layout.

width the width of the credits text box, a numeric value that is relative to the map area
(so 1 means the whole map width). By default (NA), it is determined by the width
of the text. Tip: set bg.color to see the result.

just Justification of the attribute relative to the point coordinates. The first value
specifies horizontal and the second value vertical justification. Possible values
are: "left" , "right", "center", "bottom", and "top". Numeric values of
0 specify left/bottom alignment and 1 right/top alignment. This option is only
used, if position is specified by numeric coordinates. The default value is
controlled by the argument "attr.just" of tm_layout.

See Also

tm_xlab

tm_facets 45

Examples

current.mode <- tmap_mode("plot")

data(NLD_muni, NLD_prov)

tm_shape(NLD_muni) +
tm_fill(col="population", convert2density=TRUE,

style="kmeans", title = expression("Population (per " * km^2 * ")")) +
tm_borders("grey25", alpha=.5) +
tm_shape(NLD_prov) +
tm_borders("grey40", lwd=2) +

tm_format("NLD", bg.color="white", frame = TRUE) +
tm_credits("(c) Statistics Netherlands (CBS) and\nKadaster Nederland", position=c("left", "bottom"))

restore current mode
tmap_mode(current.mode)

tm_facets Small multiples

Description

Creates a tmap-element that specifies facets (small multiples). Small multiples can be created in
two ways: 1) by specifying the by argument with one or two variable names, by which the data
is grouped, 2) by specifying multiple variable names in any of the aesthetic argument of the layer
functions (for instance, the argument col in tm_fill). This function further specifies the facets, for
instance number of rows and columns, and whether the coordinate and scales are fixed or free (i.e.
independent of each other). An overview of the different approaches to create facets is provided in
the examples.

Usage

tm_facets(
by = NULL,
along = NULL,
as.layers = FALSE,
ncol = NA,
nrow = NA,
free.coords = !as.layers,
drop.units = TRUE,
drop.empty.facets = TRUE,
drop.NA.facets = FALSE,
sync = NA,
showNA = NA,
textNA = "Missing",
free.scales = NULL,
free.scales.fill = NULL,
free.scales.symbol.size = NULL,

46 tm_facets

free.scales.symbol.col = NULL,
free.scales.symbol.shape = NULL,
free.scales.text.size = NULL,
free.scales.text.col = NULL,
free.scales.line.col = NULL,
free.scales.line.lwd = NULL,
free.scales.raster = NULL,
inside.original.bbox = FALSE,
scale.factor = 2,
drop.shapes = drop.units

)

Arguments

by data variable name by which the data is split, or a vector of two variable names
to split the data by two variables (where the first is used for the rows and the
second for the columns).

along data variable name by which the data is split and plotted on separate pages. This
is especially useful for animations made with tmap_animation. The along
argument can be used in combination with the by argument. It is only supported
in "plot" mode (so not in "view" mode).

as.layers logical that determines whether facets are shown as different layers in "view"
mode. By default FALSE, i.e. facets are drawn as small multiples.

ncol number of columns of the small multiples grid. Not applicable if by contains
two variable names.

nrow number of rows of the small multiples grid. Not applicable if by contains two
variable names.

free.coords logical. If the by argument is specified, should each map has its own coordi-
nate ranges? By default TRUE, unless facets are shown in as different layers
(as.layers = TRUE)

drop.units logical. If the by argument is specified, should non-selected spatial units be
dropped? If FALSE, they are plotted where mapped aesthetics are regarded as
missing values. Not applicable for raster shapes. By default TRUE.

drop.empty.facets

logical. If the by argument is specified, should empty facets be dropped? Empty
facets occur when the by-variable contains unused levels. When TRUE and two
by-variables are specified, empty rows and columns are dropped.

drop.NA.facets logical. If the by argument is specified, and all values of the defined aesthetic
variables (e.g. col from tm_fill) for specific facets, should these facets be
dropped? FALSE by default.

sync logical. Should the navigation in view mode (zooming and panning) be syn-
chronized? By default TRUE if the facets have the same bounding box. This is
generally the case when rasters are plotted, or when free.coords is FALSE.

showNA If the by argument is specified, should missing values of the by-variable be
shown in a facet? If two by-variables are specified, should missing values be
shown in an additional row and column? If NA, missing values only are shown

tm_facets 47

if they exist. Similar to the useNA argument of table, where TRUE, FALSE, and
NA correspond to "always", "no", and "ifany" respectively.

textNA text used for facets of missing values.

free.scales logical. Should all scales of the plotted data variables be free, i.e. independent
of each other? Specific scales can be set with free.scales.x, where x is the
name of the aesthetic, e.g. "symbol.col". By default, free.scales is TRUE,
unless the by argument is used, the along argument is used, or a stars object
with a third dimension is shown.

free.scales.fill

logical. Should the color scale for the choropleth be free?
free.scales.symbol.size

logical. Should the symbol size scale for the symbol map be free?
free.scales.symbol.col

logical. Should the color scale for the symbol map be free?
free.scales.symbol.shape

logical. Should the symbol shape scale for the symbol map be free?
free.scales.text.size

logical. Should the text size scale be free?
free.scales.text.col

logical. Should the text color scale be free?
free.scales.line.col

Should the line color scale be free?
free.scales.line.lwd

Should the line width scale be free?
free.scales.raster

Should the color scale for raster layers be free?
inside.original.bbox

If free.coords, should the bounding box of each small multiple be inside the
original bounding box?

scale.factor Number that determines how the elements (e.g. font sizes, symbol sizes, line
widths) of the small multiples are scaled in relation to the scaling factor of the
shapes. The elements are scaled to the scale.factorth root of the scaling factor
of the shapes. So, for scale.factor=1, they are scaled proportional to the
scaling of the shapes. Since elements, especially text, are often too small to
read, a higher value is recommended. By default, scale.factor=2.

drop.shapes deprecated: renamed to drop.units

Details

The global option limits controls the limit of the number of facets that are plotted. By default,
tmap_options(limits=c(facets.plot=64, facets.view=4)). The maximum number of inter-
active facets is set to four since otherwise it may become very slow.

Value

tmap-element

48 tm_facets

References

Tennekes, M., 2018, tmap: Thematic Maps in R, Journal of Statistical Software, 84(6), 1-39,
doi: 10.18637/jss.v084.i06

See Also

vignette("tmap-getstarted")

Examples

data(World, NLD_muni, NLD_prov, land, metro)

current.mode <- tmap_mode("plot")

CASE 1: Facets defined by constant values
tm_shape(World) +

tm_fill(c("forestgreen", "goldenrod")) +
tm_format("World", title=c("A green world", "A dry world"), bg.color="lightskyblue2",

title.position=c("left", "bottom"))

CASE 2: Facets defined by multiple variables
tm_shape(World) +

tm_polygons(c("well_being", "life_exp"),
style=c("pretty", "fixed"), breaks=list(NULL, seq(45, 85, by = 5)),
palette=list("Oranges", "Purples"),
border.col = "black",

title=c("Well-Being Index", "Life Expectancy")) +
tm_format("World")

Not run:
tm_shape(NLD_muni) +

tm_fill(c("pop_0_14", "pop_15_24", "pop_25_44", "pop_45_64", "pop_65plus"),
style="kmeans",
palette=list("Oranges", "Greens", "Blues", "Purples", "Greys"),
title=c("Population 0 to 14", "Population 15 to 24", "Population 25 to 44",

"Population 45 to 64", "Population 65 and older")) +
tm_shape(NLD_prov) +

tm_borders() +
tm_format("NLD", frame = TRUE, asp=0)

End(Not run)

CASE 3: Facets defined by group-by variable(s)
A group-by variable that divides the objects spatially
tm_shape(NLD_prov) +

tm_polygons("gold2") +
tm_facets(by="name")

Not run:
tm_shape(NLD_muni) +

tm_borders() +
tm_facets(by="province") +

https://doi.org/10.18637/jss.v084.i06
../doc/tmap-getstarted.html

tm_facets 49

tm_fill("population", style="kmeans", convert2density = TRUE) +
tm_shape(NLD_prov) +

tm_borders(lwd=4) +
tm_facets(by="name")

End(Not run)

The objects are divided by a non-spatial variable (e.g. date/time)
if (require(dplyr) && require(tidyr)) {
metro_long <- metro %>%
gather(year, population, -name, -name_long, -iso_a3, -geometry) %>%
mutate(year = as.integer(substr(year, 4, 7)))

tm_shape(metro_long) +
tm_bubbles("population") +
tm_facets(by = "year")
}
Not run:
tm_shape(land) +
tm_raster("black") +
tm_facets(by="cover_cls", free.coords = FALSE)

End(Not run)

Facets defined by two group-by variables
Not run:
World$HPI3 <- cut(World$HPI, breaks = c(20, 35, 50, 65),

labels = c("HPI low", "HPI medium", "HPI high"))
World$GDP3 <- cut(World$gdp_cap_est, breaks = c(0, 5000, 20000, Inf),

labels = c("GDP low", "GDP medium", "GDP high"))

tm_shape(World) +
tm_fill("HPI3", palette="Dark2", colorNA="grey90", legend.show = FALSE) +
tm_facets(c("HPI3", "GDP3"), showNA=FALSE, free.coords = FALSE, drop.units = FALSE)

metro_edited <- metro %>%
mutate(pop1950cat = cut(pop1950, breaks=c(0.5, 1, 1.5, 2, 3, 5, 10, 40)*1e6),

pop2020cat = cut(pop2020, breaks=c(0.5, 1, 1.5, 2, 3, 5, 10, 40)*1e6))

tm_shape(World) +
tm_fill() +
tm_shape(metro_edited) +
tm_dots("red", size = .5) +
tm_facets(c("pop1950cat", "pop2020cat"), free.coords = FALSE) +
tm_layout(panel.label.rot = c(0, 90), panel.label.size = 2)

End(Not run)

restore current mode
tmap_mode(current.mode)

50 tm_fill

tm_fill Draw polygons

Description

Creates a tmap-element that draws the polygons. tm_fill fills the polygons. Either a fixed color is
used, or a color palette is mapped to a data variable. tm_borders draws the borders of the polygons.
tm_polygons fills the polygons and draws the polygon borders.

Usage

tm_fill(
col = NA,
alpha = NA,
palette = NULL,
convert2density = FALSE,
area = NULL,
n = 5,
style = ifelse(is.null(breaks), "pretty", "fixed"),
style.args = list(),
as.count = NA,
breaks = NULL,
interval.closure = "left",
labels = NULL,
drop.levels = FALSE,
midpoint = NULL,
stretch.palette = TRUE,
contrast = NA,
colorNA = NA,
textNA = "Missing",
showNA = NA,
colorNULL = NA,
thres.poly = 0,
title = NA,
legend.show = TRUE,
legend.format = list(),
legend.is.portrait = TRUE,
legend.reverse = FALSE,
legend.hist = FALSE,
legend.hist.title = NA,
legend.z = NA,
legend.hist.z = NA,
id = NA,
interactive = TRUE,
popup.vars = NA,
popup.format = list(),
zindex = NA,

tm_fill 51

group = NA,
auto.palette.mapping = NULL,
max.categories = NULL,
...

)

tm_borders(
col = NA,
lwd = 1,
lty = "solid",
alpha = NA,
zindex = NA,
group = NA

)

tm_polygons(
col = NA,
alpha = NA,
border.col = NA,
border.alpha = NA,
zindex = NA,
group = NA,
...

)

Arguments

col For tm_fill, it is one of

• a single color value
• the name of a data variable that is contained in shp. Either the data vari-

able contains color values, or values (numeric or categorical) that will be
depicted by a color palette (see palette. In the latter case, a choropleth is
drawn.

• "MAP_COLORS". In this case polygons will be colored such that adjacent
polygons do not get the same color. See the underlying function map_coloring
for details.

For tm_borders, it is a single color value that specifies the border line color. If
multiple values are specified, small multiples are drawn (see details).

alpha transparency number between 0 (totally transparent) and 1 (not transparent). By
default, the alpha value of the col is used (normally 1).

palette a palette name or a vector of colors. See tmaptools::palette_explorer() for
the named palettes. Use a "-" as prefix to reverse the palette. The default palette
is taken from tm_layout’s argument aes.palette, which typically depends on
the style. The type of palette from aes.palette is automatically determined,
but can be overwritten: use "seq" for sequential, "div" for diverging, and "cat"
for categorical.

52 tm_fill

convert2density

boolean that determines whether col is converted to a density variable. Should
be TRUE when col consists of absolute numbers. The area size is either approx-
imated from the shape object, or given by the argument area.

area Name of the data variable that contains the area sizes in squared kilometer.
n preferred number of classes (in case col is a numeric variable).
style method to process the color scale when col is a numeric variable. Discrete

gradient options are "cat", "fixed", "sd", "equal", "pretty", "quantile",
"kmeans", "hclust", "bclust", "fisher", "jenks", "dpih", "headtails",
and "log10_pretty". A numeric variable is processed as a categorical variable
when using "cat", i.e. each unique value will correspond to a distinct category.
For the other discrete gradient options (except "log10_pretty"), see the de-
tails in classIntervals (extra arguments can be passed on via style.args).
Continuous gradient options are "cont", "order", and "log10". The first maps
the values of col to a smooth gradient, the second maps the order of values
of col to a smooth gradient, and the third uses a logarithmic transformation.
The numeric variable can be either regarded as a continuous variable or a count
(integer) variable. See as.count.

style.args arguments passed on to classIntervals, the function that determine color
classes (see also style).

as.count when col is a numeric variable, should it be processed as a count variable? For
instance, if style = "pretty", n = 2, and the value range of the variable is 0 to
10, then the column classes for as.count = TRUE are 0; 1 to 5; 6 to 10 (note that
0 is regarded as an own category) whereas for as.count = FALSE they are 0 to 5;
5 to 10. Only applicable if style is "pretty", "fixed", or "log10_pretty".
By default, TRUE if style is one of these, and the variable is an integer.

breaks in case style=="fixed", breaks should be specified. The breaks argument can
also be used when style="cont". In that case, the breaks are mapped evenly to
the sequential or diverging color palette.

interval.closure

value that determines whether where the intervals are closed: "left" or "right".
Only applicable if col is a numeric variable. If as.count = TRUE, inverval.closure
is always set to "left".

labels labels of the classes.
drop.levels should unused classes be omitted? FALSE by default.
midpoint The value mapped to the middle color of a diverging palette. By default it is set

to 0 if negative and positive values are present. In that case, the two sides of the
color palette are assigned to negative respectively positive values. If all values
are positive or all values are negative, then the midpoint is set to NA, which
means that the value that corresponds to the middle color class (see style) is
mapped to the middle color. Only applies when col is a numeric variable. If it
is specified for sequential color palettes (e.g. "Blues"), then this color palette
will be treated as a diverging color palette.

stretch.palette

Logical that determines whether the categorical color palette should be stretched
if there are more categories than colors. If TRUE (default), interpolated colors are
used (like a rainbow). If FALSE, the palette is repeated.

tm_fill 53

contrast vector of two numbers that determine the range that is used for sequential and
diverging palettes (applicable when auto.palette.mapping=TRUE). Both num-
bers should be between 0 and 1. The first number determines where the palette
begins, and the second number where it ends. For sequential palettes, 0 means
the brightest color, and 1 the darkest color. For diverging palettes, 0 means the
middle color, and 1 both extremes. If only one number is provided, this number
is interpreted as the endpoint (with 0 taken as the start).

colorNA color used for missing values. Use NULL for transparency.
textNA text used for missing values.
showNA logical that determines whether missing values are named in the legend. By

default (NA), this depends on the presence of missing values.
colorNULL colour for polygons that are shown on the map that are out of scope
thres.poly number that specifies the threshold at which polygons are taken into account.

The number itself corresponds to the proportion of the area sizes of the polygons
to the total polygon size. By default, all polygons are drawn. To ignore polygons
that are not visible in a normal plot, a value like 1e-05 is recommended.

title title of the legend element
legend.show logical that determines whether the legend is shown
legend.format list of formatting options for the legend numbers. Only applicable if labels is

undefined. Parameters are:
fun Function to specify the labels. It should take a numeric vector, and should

return a character vector of the same size. By default it is not specified. If
specified, the list items scientific, format, and digits (see below) are
not used.

scientific Should the labels be formatted scientifically? If so, square brackets
are used, and the format of the numbers is "g". Otherwise, format="f",
and text.separator, text.less.than, and text.or.more are used. Also,
the numbers are automatically rounded to millions or billions if applicable.

format By default, "f", i.e. the standard notation xxx.xxx, is used. If scientific=TRUE
then "g", which means that numbers are formatted scientifically, i.e. n.dddE+nn
if needed to save space.

digits Number of digits after the decimal point if format="f", and the number
of significant digits otherwise.

big.num.abbr Vector that defines whether and which abbrevations are used for
large numbers. It is a named numeric vector, where the name indicated the
abbreviation, and the number the magnitude (in terms on numbers of zero).
Numbers are only abbrevation when they are large enough. Set it to NA to
disable abbrevations. The default is c("mln" = 6, "bln" = 9). For layers
where style is set to log10 or log10_pretty, the default is NA.

prefix Prefix of each number
suffix Suffix of each number
text.separator Character string to use to separate numbers in the legend (de-

fault: "to").
text.less.than Character value(s) to use to translate "Less than". When a char-

acter vector of length 2 is specified, one for each word, these words are
aligned when text.to.columns = TRUE

54 tm_fill

text.or.more Character value(s) to use to translate "or more". When a character
vector of length 2 is specified, one for each word, these words are aligned
when text.to.columns = TRUE

text.align Value that determines how the numbers are aligned, "left", "center"
or "right". By default "left" for legends in portrait format (legend.is.protrait
= TRUE), and "center" otherwise.

text.to.columns Logical that determines whether the text is aligned to three
columns (from, text.separator, to). By default FALSE.

html.escape Logical that determins whther HTML code is escaped in the pop-
ups in view mode. By default TRUE. If set to FALSE HTML code can be
added, e.g. to added white space via .

... Other arguments passed on to formatC

legend.is.portrait

logical that determines whether the legend is in portrait mode (TRUE) or land-
scape (FALSE)

legend.reverse logical that determines whether the items are shown in reverse order, i.e. from
bottom to top when legend.is.portrait = TRUE and from right to left when
legend.is.portrait = FALSE

legend.hist logical that determines whether a histogram is shown
legend.hist.title

title for the histogram. By default, one title is used for both the histogram and
the normal legend.

legend.z index value that determines the position of the legend element with respect to
other legend elements. The legend elements are stacked according to their z
values. The legend element with the lowest z value is placed on top.

legend.hist.z index value that determines the position of the histogram legend element

id name of the data variable that specifies the indices of the polygons. Only used
for "view" mode (see tmap_mode).

interactive logical that determines whether this layer is interactive in view mode (e.g. hover
text, popup, and click event in shiny apps)

popup.vars names of data variables that are shown in the popups in "view" mode. If
convert2density=TRUE, the derived density variable name is suffixed with
_density. If NA (default), only aesthetic variables (i.e. specified by col and
lwd) are shown). If they are not specified, all variables are shown. Set popup.vars
to FALSE to disable popups. When a vector of variable names is provided, the
names (if specified) are printed in the popups.

popup.format list of formatting options for the popup values. See the argument legend.format
for options. Only applicable for numeric data variables. If one list of formatting
options is provided, it is applied to all numeric variables of popup.vars. Also, a
(named) list of lists can be provided. In that case, each list of formatting options
is applied to the named variable.

zindex zindex of the pane in view mode. By default, it is set to the layer number plus
400. By default, the tmap layers will therefore be placed in the custom panes
"tmap401", "tmap402", etc., except for the base tile layers, which are placed in
the standard "tile". This parameter determines both the name of the pane and

tm_fill 55

the z-index, which determines the pane order from bottom to top. For instance,
if zindex is set to 500, the pane will be named "tmap500".

group name of the group to which this layer belongs in view mode. Each group can
be selected or deselected in the layer control item. Set group = NULL to hide the
layer in the layer control item. By default, it will be set to the name of the shape
(specified in tm_shape).

auto.palette.mapping

deprecated. It has been replaced by midpoint for numeric variables and stretch.palette
for categorical variables.

max.categories deprecated. It has moved to tmap_options.

... for tm_polygons, these arguments passed to either tm_fill or tm_borders.
For tm_fill, these arguments are passed on to map_coloring.

lwd border line width (see par)

lty border line type (see par)

border.col border line color

border.alpha transparency number between 0 (totally transparent) and 1 (not transparent). By
default, the alpha value of the col is used (normally 1).

Details

Small multiples can be drawn in two ways: either by specifying the by argument in tm_facets,
or by defining multiple variables in the aesthetic arguments. The aesthetic argument of tm_fill
(and tm_polygons) is col. In the latter case, the arguments, except for thres.poly, and the ones
starting with legend., can be specified for small multiples as follows. If the argument normally
only takes a single value, such as n, then a vector of those values can be specified, one for each
small multiple. If the argument normally can take a vector, such as palette, then a list of those
vectors (or values) can be specified, one for each small multiple.

Value

tmap-element

References

Tennekes, M., 2018, tmap: Thematic Maps in R, Journal of Statistical Software, 84(6), 1-39,
doi: 10.18637/jss.v084.i06

See Also

vignette("tmap-getstarted")

Examples

data(World)

Constant fill
tm_shape(World) + tm_fill("darkolivegreen3") + tm_format("World", title="A green World")

https://doi.org/10.18637/jss.v084.i06
../doc/tmap-getstarted.html

56 tm_grid

Borders only
tm_shape(World) + tm_borders()

Data variable containing colours values
World$isNLD <- ifelse(World$name=="Netherlands", "darkorange", "darkolivegreen3")
tm_shape(World) +

tm_fill("isNLD") +
tm_layout("Find the Netherlands!")

tm_shape(World, projection = "+proj=eck4") +
tm_polygons("economy", title="Economy", id="name") +
tm_text("iso_a3", size="AREA", scale=1.5) +
tm_format("World")

Numeric data variable
tm_shape(World, projection = "+proj=eck4") +
tm_polygons("HPI", palette="RdYlGn", style="cont", n=8,
title="Happy Planet Index", id="name") +
tm_text("iso_a3", size="AREA", scale=1.5) +
tm_style("grey") +
tm_format("World")

Not run:
data(NLD_prov, NLD_muni)
Map coloring algorithm
tm_shape(NLD_prov) +

tm_fill("name", legend.show = FALSE) +
tm_shape(NLD_muni) +

tm_polygons("MAP_COLORS", palette="Greys", alpha = .25) +
tm_shape(NLD_prov) +

tm_borders(lwd=2) +
tm_text("name", shadow=TRUE) +

tm_format("NLD", title="Dutch provinces and\nmunicipalities", bg.color="white")

Cartogram
if (require(cartogram)) {
NLD_prov_pop <- cartogram(NLD_prov, "population")
tm_shape(NLD_prov_pop) +
tm_polygons("origin_non_west", title = "Non-western origin (%)")
}

End(Not run)

TIP: check out these examples in view mode, enabled with tmap_mode("view")

tm_grid Coordinate grid / graticule lines

tm_grid 57

Description

Creates a tmap-element that draws coordinate grid lines. It serves as a layer that can be drawn
anywhere between other layers. By default, tm_grid draws horizontal and vertical lines acording
to the coordinate system of the (master) shape object. Latitude and longitude graticules are drawn
with tm_graticules.

Usage

tm_grid(
x = NA,
y = NA,
n.x = NA,
n.y = NA,
projection = NA,
col = NA,
lwd = 1,
alpha = NA,
labels.show = TRUE,
labels.size = 0.6,
labels.col = NA,
labels.rot = c(0, 0),
labels.format = list(big.mark = ","),
labels.cardinal = FALSE,
labels.margin.x = 0,
labels.margin.y = 0,
labels.space.x = NA,
labels.space.y = NA,
labels.inside.frame = FALSE,
ticks = labels.show & !labels.inside.frame,
lines = TRUE,
ndiscr = 100,
zindex = NA

)

tm_graticules(
x = NA,
y = NA,
n.x = NA,
n.y = NA,
projection = 4326,
labels.format = list(suffix = intToUtf8(176)),
labels.cardinal = TRUE,
...

)

58 tm_grid

Arguments

x x coordinates for vertical grid lines. If NA, it is specified with a pretty scale and
n.x.

y y coordinates for horizontal grid lines. If NA, it is specified with a pretty scale
and n.y.

n.x preferred number of grid lines for the x axis. For the labels, a pretty sequence
is used, so the number of actual labels may be different than n.x.

n.y preferred number of grid lines for the y axis. For the labels, a pretty sequence
is used, so the number of actual labels may be different than n.y.

projection projection character. If specified, the grid lines are projected accordingly. Many
world maps are projected, but still have latitude longitude (epsg 4326) grid lines.

col color of the grid lines.

lwd line width of the grid lines

alpha alpha transparency of the grid lines. Number between 0 and 1. By default, the
alpha transparency of col is taken.

labels.show show tick labels. Either one value for both x and y axis, or a vector two: the first
for x and latter for y.

labels.size font size of the tick labels

labels.col font color of the tick labels

labels.rot Rotation angles of the labels. Vector of two values: the first is the rotation angle
(in degrees) of the tick labels on the x axis and the second is the rotation angle
of the tick labels on the y axis. Only 0, 90, 180, and 270 are valid values.

labels.format list of formatting options for the grid labels. Parameters are:

fun Function to specify the labels. It should take a numeric vector, and should
return a character vector of the same size. By default it is not specified. If
specified, the list items scientific, format, and digits (see below) are
not used.

scientific Should the labels be formatted scientifically? If so, square brackets
are used, and the format of the numbers is "g". Otherwise, format="f",
and text.separator, text.less.than, and text.or.more are used. Also,
the numbers are automatically rounded to millions or billions if applicable.

format By default, "f", i.e. the standard notation xxx.xxx, is used. If scientific=TRUE
then "g", which means that numbers are formatted scientifically, i.e. n.dddE+nn
if needed to save space.

digits Number of digits after the decimal point if format="f", and the number
of significant digits otherwise.

... Other arguments passed on to formatC

labels.cardinal

add the four cardinal directions (N, E, S, W) to the labels, instead of using
negative coordiantes for west and south (so it assumes that the coordinates are
positive in the north-east direction).

labels.margin.x

margin between tick labels of x axis and the frame. Note that when labels.inside.frame
== FALSE and ticks == TRUE, the ticks will be adjusted accordingly.

tm_grid 59

labels.margin.y

margin between tick labels of y axis and the frame. Note that when labels.inside.frame
== FALSE and ticks == TRUE, the ticks will be adjusted accordingly.

labels.space.x space that is used for the labels and ticks for the x-axis when labels.inside.frame
== FALSE. By default, it is determined automatically using the widths and heights
of the tick labels. The unit of this parameter is text line height.

labels.space.y space that is used for the labels and ticks for the y-axis when labels.inside.frame
== FALSE. By default, it is determined automatically using the widths and heights
of the tick labels. The unit of this parameter is text line height.

labels.inside.frame

Show labels inside the frame? By default FALSE

ticks If labels.inside.frame = FALSE, should ticks can be drawn between the la-
bels and the frame? Either one value for both x and y axis, or a vector two: the
first for x and latter for y.

lines If labels.inside.frame = FALSE, should grid lines can be drawn?

ndiscr number of points to discretize a parallel or meridian (only applicable for curved
grid lines)

zindex zindex of the pane in view mode. By default, it is set to the layer number plus
400. By default, the tmap layers will therefore be placed in the custom panes
"tmap401", "tmap402", etc., except for the base tile layers, which are placed in
the standard "tile". This parameter determines both the name of the pane and
the z-index, which determines the pane order from bottom to top. For instance,
if zindex is set to 500, the pane will be named "tmap500".

... arguments passed on to tm_grid

Examples

current.mode <- tmap_mode("plot")

data(NLD_muni, World)

tmap_arrange(
qtm(NLD_muni, borders = NULL) + tm_grid(),
qtm(NLD_muni, borders = NULL) + tm_graticules()
)

qtm(World, shape.projection = "+proj=robin", style = "natural") +
tm_graticules(ticks = FALSE) +
tm_layout(frame=FALSE)

tmap_mode(current.mode)

60 tm_iso

tm_iso Draw iso (contour) lines with labels

Description

This function is a wrapper of tm_lines and tm_text aimed to draw isopleths.

Usage

tm_iso(
col = NA,
text = "level",
size = 0.5,
remove.overlap = TRUE,
along.lines = TRUE,
overwrite.lines = TRUE,
bg.color = tmap_options()$bg.color,
group = NA,
...

)

Arguments

col line color. See tm_lines.

text text to display.

size text size (see tm_text)

remove.overlap see tm_text

along.lines see tm_text

overwrite.lines

see tm_text

bg.color background color of the labels. Note: in tmap <= 3.2, the iso lines were cut
to make space for labels. In tmap >= 3.3, this is changed: the iso lines remain
unchanged, but the labels are printed with a background color by default.

group name of the group to which this layer belongs in view mode. Each group can
be selected or deselected in the layer control item. Set group = NULL to hide the
layer in the layer control item. By default, it will be set to the name of the shape
(specified in tm_shape).

... arguments passed on to tm_lines or tm_text

tm_layout 61

tm_layout Layout of cartographic maps

Description

This element specifies the map layout. The main function tm_layout controls title, margins, aspect
ratio, colors, frame, legend, among many other things. The function tm_legend is a shortcut to
access all legend. arguments without this prefix. The other functions are wrappers for two pur-
poses: tm_format specifies position related layout settings such as margins, and tm_style specifies
general styling related layout settings such as colors and font. Typically, the former functions are
shape dependent, and the latter functions are shape independent. See details for predefined styles
and formats. With tmap.style, a default style can be specified. Multiple tm_layout elements (or
wrapper functions) can be stacked: called arguments will be overwritten.

Usage

tm_layout(
title,
scale,
title.size,
bg.color,
aes.color,
aes.palette,
attr.color,
sepia.intensity,
saturation,
frame,
frame.lwd,
frame.double.line,
asp,
outer.margins,
inner.margins,
between.margin,
outer.bg.color,
fontface,
fontfamily,
compass.type,
earth.boundary,
earth.boundary.color,
earth.boundary.lwd,
earth.datum,
space.color,
legend.show,
legend.only,
legend.outside,
legend.outside.position,
legend.outside.size,

62 tm_layout

legend.position,
legend.stack,
legend.just,
legend.width,
legend.height,
legend.hist.height,
legend.hist.width,
legend.title.color,
legend.title.size,
legend.title.fontface,
legend.title.fontfamily,
legend.text.color,
legend.text.size,
legend.text.fontface,
legend.text.fontfamily,
legend.hist.size,
legend.format,
legend.frame,
legend.frame.lwd,
legend.bg.color,
legend.bg.alpha,
legend.hist.bg.color,
legend.hist.bg.alpha,
title.snap.to.legend,
title.position,
title.color,
title.fontface,
title.fontfamily,
title.bg.color,
title.bg.alpha,
panel.show,
panel.labels,
panel.label.size,
panel.label.color,
panel.label.fontface,
panel.label.fontfamily,
panel.label.bg.color,
panel.label.height,
panel.label.rot,
main.title,
main.title.size,
main.title.color,
main.title.fontface,
main.title.fontfamily,
main.title.position,
attr.outside,
attr.outside.position,
attr.outside.size,

tm_layout 63

attr.position,
attr.just,
design.mode

)

tm_legend(...)

tm_style(style, ...)

tm_format(format, ...)

Arguments

title Global title of the map. For small multiples, multiple titles can be specified.
The title is drawn inside the map. Alternatively, use panel.labels to print the
map as a panel, with the title inside the panel header (especially useful for small
multiples). Another alternative is the main.title which prints a title above
the map. Titles for the legend items are specified at the layer functions (e.g.
tm_fill).

scale numeric value that serves as the global scale parameter. All font sizes, symbol
sizes, border widths, and line widths are controlled by this value. Each of these
elements can be scaled independently with the scale, lwd, or size arguments
provided by the tmap-elements.

title.size Relative size of the title

bg.color Background color. By default it is "white". A recommended alternative for
choropleths is light grey (e.g., "grey85").

aes.color Default color values for the aesthetics layers. Should be a named vector with
the names chosen from: fill, borders, symbols, dots, lines, text, na. Use
"#00000000" for transparency.

aes.palette Default color palettes for the aesthetics. It takes a list of three items: seq for se-
quential palettes, div for diverging palettes, and cat for categorical palettes. By
default, Color Brewer palettes (see (see tmaptools::palette_explorer()))
are used. It is also possible provide a vector of colors for any of these items.

attr.color Default color value for map attributes
sepia.intensity

Number between 0 and 1 that defines the amount of sepia effect, which gives the
map a brown/yellowish flavour. By default this effect is disabled (sepia.intensity=0).
All colored used in the map are adjusted with this effect.

saturation Number that determines how much saturation (also known as chroma) is used:
saturation=0 is greyscale and saturation=1 is normal. A number larger than
1 results in very saturated maps. All colored used in the map are adjusted with
this effect. Hacking tip: use a negative number.

frame Either a boolean that determines whether a frame is drawn, or a color value that
specifies the color of the frame.

frame.lwd width of the frame

64 tm_layout

frame.double.line

draw a double frame line border?

asp Aspect ratio. The aspect ratio of the map (width/height). If NA, it is determined
by the bounding box (see argument bbox of tm_shape), the outer.margins,
and the inner.margins. If 0, then the aspect ratio is adjusted to the aspect ratio
of the device.

outer.margins Relative margins between device and frame. Vector of four values specifying
the bottom, left, top, and right margin. Values are between 0 and 1. When facets
are created, the outer margins are the margins between the outer panels and the
device borders (see also between.margin)

inner.margins Relative margins inside the frame. Vector of four values specifying the bottom,
left, top, and right margin. Values are between 0 and 1. By default, 0 for each
side if master shape is a raster, otherwise 0.02.

between.margin Margin between facets (small multiples) in number of text line heights. The
height of a text line is automatically scaled down based on the number of facets.

outer.bg.color Background color outside the frame.

fontface global font face for the text in the map. It can also be set locally per element
(see e.g. title.fontface).

fontfamily global font family for the text in the map. It can also be set locally per (see e.g.
title.fontfamily).

compass.type type of compass, one of: "arrow", "4star", "8star", "radar", "rose". Of
course, only applicable if a compass is shown. The compass type can also be set
within tm_compass.

earth.boundary Logical that determines whether the boundaries of the earth are shown or a
bounding box that specifies the boundaries (an sf bbox object, see st_bbox,
or any object that can be read by bb). By default, the boundaries are c(-180,
-90, 180, 90). Useful for projected world maps. Often, it is useful to crop both
poles (e.g., with c(-180, -88, 180, 88)).

earth.boundary.color

Color of the earth boundary.
earth.boundary.lwd

Line width of the earth boundary.

earth.datum Geodetic datum to determine the earth boundary. By default epsg 4326 (long/lat).

space.color Color of the space, i.e. the region inside the frame, and outside the earth bound-
ary.

legend.show Logical that determines whether the legend is shown.

legend.only logical. Only draw the legend (without map)? Particularly useful for small
multiples with a common legend.

legend.outside Logical that determines whether the legend is plot outside of the map/facets.
Especially useful when using facets that have a common legend (i.e. with
free.scales=FALSE).

legend.outside.position

Character that determines the outside position of the legend. Only applicable
when legend.outside=TRUE. One of: "right", "left", "top", or "bottom".

tm_layout 65

legend.outside.size

Numeric value that determines the relative size of the legend, when legend.outside=TRUE.
If the first value of legend.outside.position is "top" or "bottom", then it
is the width of the legend, else it is the height of the legend. Note that the actual
height or width of the legend is determined by the content of the legend (and the
used font sizes). This argument specifies the upperbound of the width or height.

legend.position

Position of the legend. Vector of two values, specifying the x and y coordinates.
Either this vector contains "left", "LEFT", "center", "right", or "RIGHT"
for the first value and "top", "TOP", "center", "bottom", or "BOTTOM" for the
second value, or this vector contains two numeric values between 0 and 1 that
specifies the x and y coordinates of the left bottom corner of the legend. The
uppercase values correspond to the position without margins (so tighter to the
frame). By default, it is automatically placed in the corner with most space based
on the (first) shape object. If legend.outside=TRUE, this argument specifies the
legend position within the outside panel.

legend.stack Value that determines how different legends are stacked: "vertical" or "horizontal".
To stack items within a same legend, look at "legend.is.portrait" in the spe-
cific layer calls.

legend.just Justification of the legend relative to the point coordinates. The first value spec-
ifies horizontal and the second value vertical justification. Possible values are:
"left" , "right", "center", "bottom", and "top". Numeric values of 0 spec-
ify left/bottom alignment and 1 right/top alignment. This option is only used, if
legend.position is specified by numeric coordinates.

legend.width width of the legend. This number is relative to the map area (so 1 means the
whole map width). If it is a negative number, it will be the exact legend width.
If it is a positive number (by default), it will be the maximum legend width; the
actual legend width will be decreased automatically based on the legend content
and font sizes.or Default color value for map attributes

legend.height height of the legend. If it is a negative number, it will be the exact legend height.
If it is a positive number (by default), it will be the maximum legend height; the
actual legend height will be decreased automatically based on the legend content
and font sizes.

legend.hist.height

height of the histogram. This height is initial. If the total legend is downscaled
to legend.height, the histogram is downscaled as well.

legend.hist.width

width of the histogram. By default, it is equal to the legend.width.
legend.title.color

color of the legend titles
legend.title.size

Relative font size for the legend title
legend.title.fontface

font face for the legend title. By default, set to the global parameter fontface.
legend.title.fontfamily

font family for the legend title. By default, set to the global parameter fontfamily.

66 tm_layout

legend.text.color

color of the legend text
legend.text.size

Relative font size for the legend text elements
legend.text.fontface

font face for the legend text labels. By default, set to the global parameter
fontface.

legend.text.fontfamily

font family for the legend text labels. By default, set to the global parameter
fontfamily.

legend.hist.size

Relative font size for the choropleth histogram
legend.format list of formatting options for the legend numbers. Only applicable for layer

functions (such as tm_fill) where labels is undefined. Parameters are:
fun Function to specify the labels. It should take a numeric vector, and should

return a character vector of the same size. By default it is not specified. If
specified, the list items scientific, format, and digits (see below) are
not used.

scientific Should the labels be formatted scientifically? If so, square brackets
are used, and the format of the numbers is "g". Otherwise, format="f",
and text.separator, text.less.than, text.or.more, and big.num.abbr
are used. Also, the numbers are automatically rounded to millions or bil-
lions if applicable.

format By default, "f", i.e. the standard notation xxx.xxx, is used. If scientific=TRUE
then "g", which means that numbers are formatted scientifically, i.e. n.dddE+nn
if needed to save space.

digits Number of digits after the decimal point if format="f", and the number
of significant digits otherwise.

big.num.abbr Vector that defines whether and which abbrevations are used for
large numbers. It is a named numeric vector, where the name indicated the
abbreviation, and the number the magnitude (in terms on numbers of zero).
Numbers are only abbrevation when they are large enough. Set it to NA to
disable abbrevations. The default is c("mln" = 6, "bln" = 9). For layers
where style is set to log10 or log10_pretty, the default is NA.

text.separator Character string to use to separate numbers in the legend (de-
fault: "to").

text.less.than Character value(s) to use to translate "Less than". When a char-
acter vector of length 2 is specified, one for each word, these words are
aligned when text.to.columns = TRUE

text.or.more Character value(s) to use to translate "or more". When a character
vector of length 2 is specified, one for each word, these words are aligned
when text.to.columns = TRUE

text.align Value that determines how the numbers are aligned, "left", "center"
or "right". By default "left" for legends in portrait format (legend.is.protrait
= TRUE), and "center" otherwise.

text.to.columns Logical that determines whether the text is aligned to three
columns (from, text.separator, to). By default FALSE.

tm_layout 67

text.align Value that determines how the numbers are aligned, "left", "center"
or "right". By default "left" for legends in portrait format (legend.is.protrait
= TRUE), and "center" otherwise.

text.to.columns Logical that determines whether the text is aligned to three
columns (from, text.separator, to). By default FALSE.

html.escape Logical that determins whther HTML code is escaped in the pop-
ups in view mode. By default TRUE. If set to FALSE HTML code can be
added, e.g. to added white space via .

... Other arguments passed on to formatC

legend.frame either a logical that determines whether the legend is placed inside a frame, or a
color that directly specifies the frame border color.

legend.frame.lwd

line width of the legend frame (applicable if legend.frame is TRUE or a color)
legend.bg.color

Background color of the legend. Use TRUE to match with the overall background
color bg.color.

legend.bg.alpha

Transparency number between 0 (totally transparent) and 1 (not transparent).
By default, the alpha value of the legend.bg.color is used (normally 1).

legend.hist.bg.color

Background color of the histogram
legend.hist.bg.alpha

Transparency number between 0 (totally transparent) and 1 (not transparent).
By default, the alpha value of the legend.hist.bg.color is used (normally 1).

title.snap.to.legend

Logical that determines whether the title is part of the legend. By default FALSE,
unless the legend is drawn outside the map (see legend.outside).

title.position Position of the title. Vector of two values, specifying the x and y coordinates.
Either this vector contains "left", "LEFT", "center", "right", or "RIGHT" for the
first value and "top", "TOP", "center", "bottom", or "BOTTOM" for the second
value, or this vector contains two numeric values between 0 and 1 that specifies
the x and y coordinates of the tile. The uppercase values correspond to the
position without margins (so tighter to the frame). By default the title is placed
on top of the legend (determined by legend.position).

title.color color of the title

title.fontface font face for the title. By default, set to the global parameter fontface.
title.fontfamily

font family for the title. By default, set to the global parameter fontfamily.

title.bg.color background color of the title. Use TRUE to match with the overall background
color bg.color. By default, it is TRUE if legend.frame is TRUE or a color.

title.bg.alpha Transparency number between 0 (totally transparent) and 1 (not transparent).
By default, the alpha value of the title.bg.color is used (normally 1).

panel.show Logical that determines if the map(s) are shown as panels. If TRUE, the title will
be placed in the panel header instead of inside the map. By default, it is TRUE
when small multiples are created with the by variable. (See tm_facets)

68 tm_layout

panel.labels Panel labels. Only applicable when panel.show is TRUE. For cross tables facets,
it should be a list containing the row names in the first, and column names in the
second item.

panel.label.size

Relative font size of the panel labels
panel.label.color

Font color of the panel labels
panel.label.fontface

font face for the panel labels. By default, set to the global parameter fontface.
panel.label.fontfamily

font family for the panel labels. By default, set to the global parameter fontfamily.
panel.label.bg.color

Background color of the panel labels
panel.label.height

Height of the labels in number of text line heights.
panel.label.rot

Rotation angles of the panel labels. Vector of two values: the first is the ro-
tation angle (in degrees) of the row panels, which are only used in cross-table
facets (when tm_facets’s by is specified with two variables). The second is the
rotation angle of the column panels.

main.title Title that is printed above the map (or small multiples). When multiple pages
are generated (see along argument of tm_facets), a vector can be provided. By
default, the main title is only printed when this along argument is specified.

main.title.size

Size of the main title
main.title.color

Color of the main title
main.title.fontface

font face for the main title. By default, set to the global parameter fontface.
main.title.fontfamily

font family for the main title. By default, set to the global parameter fontfamily.
main.title.position

Position of the main title. Either a numeric value between 0 (left) and 1 (right),
or a character value: "left", "center", or "right".

attr.outside Logical that determines whether the attributes are plot outside of the map/facets.
attr.outside.position

Character that determines the outside position of the attributes: "top" or "bottom".
Only applicable when attr.outside=TRUE. If the legend is also drawn outside
(with legend.outside=TRUE) and on the same side of the map (e.g. also "top"
or "bottom"), the attributes are placed between the map and the legend. This
can be changed by setting attr.outside.position to "TOP" or "BOTTOM": in
this case, the attributes are placed above respectively below the legend.

attr.outside.size

Numeric value that determines the relative height of the attribute viewport, when
attr.outside=TRUE.

tm_layout 69

attr.position Position of the map attributes, which are tm_credits, tm_scale_bar, tm_compass,
and tm_minimap. Vector of two values, specifying the x and y coordinates. The
first value is "left", "LEFT", "center", "right", or "RIGHT", and the second
value "top", "TOP", "center", "bottom", or "BOTTOM". The uppercase values
correspond to the position without margins (so tighter to the frame). Positions
can also be set separately in the map attribute functions. If attr.outside=TRUE,
this argument specifies the position of the attributes within the outside panel.

attr.just Justification of the attributes relative to the point coordinates. The first value
specifies horizontal and the second value vertical justification. Possible values
are: "left" , "right", "center", "bottom", and "top". Numeric values of
0 specify left/bottom alignment and 1 right/top alignment. This option is only
used, if attr.position is specified by numeric coordinates. It can also be
specified per attribute function.

design.mode Not used anymore, since it is now only a tmap option: see tmap_options.

... other arguments from tm_layout

style name of the style

format name of the format

Details

Predefined styles:

"white" White background, commonly used colors (default)
"gray"/"grey" Grey background, useful to highlight sequential palettes (e.g. in choropleths)
"natural" Emulation of natural view: blue waters and green land
"bw" Greyscale, obviously useful for greyscale printing
"classic" Classic styled maps (recommended)
"cobalt" Inspired by latex beamer style cobalt
"albatross" Inspired by latex beamer style albatross
"beaver" Inspired by latex beamer style beaver
————————— —————————————————————————————————

Predefined formats

"World" Format specified for world maps
"World_wide" Format specified for world maps with more space for the legend
"NLD" Format specified for maps of the Netherlands
"NLD_wide" Format specified for maps of the Netherlands with more space for the legend
————————— —————————————————————————————————

References

Tennekes, M., 2018, tmap: Thematic Maps in R, Journal of Statistical Software, 84(6), 1-39,
doi: 10.18637/jss.v084.i06

https://doi.org/10.18637/jss.v084.i06

70 tm_layout

See Also

vignette("tmap-getstarted")

Examples

data(World, land)

tm_shape(World) +
tm_fill("pop_est_dens", style="kmeans", title="Population density") +

tm_style("albatross", frame.lwd=10) + tm_format("World", title="The World")

Not run:
tm_shape(land) +
tm_raster("elevation", breaks=c(-Inf, 250, 500, 1000, 1500, 2000, 2500, 3000, 4000, Inf),
palette = terrain.colors(9), title="Elevation", midpoint = NA) +
tm_shape(World, is.master=TRUE, projection = "+proj=eck4") +
tm_borders("grey20") +
tm_graticules(labels.size = .5) +
tm_text("name", size="AREA") +
tm_compass(position = c(.65, .15), color.light = "grey90") +
tm_credits("Eckert IV projection", position = c("right", "BOTTOM")) +
tm_style("classic") +
tm_layout(bg.color="lightblue",
inner.margins=c(.04,.03, .02, .01),
earth.boundary = TRUE,
space.color="grey90") +
tm_legend(position = c("left", "bottom"),
frame = TRUE,
bg.color="lightblue")

End(Not run)

tm_shape(World, projection="+proj=robin") +
tm_polygons("HPI", palette="div", n=7,
title = "Happy Planet Index") +
tm_credits("Robinson projection", position = c("right", "BOTTOM")) +
tm_style("natural", earth.boundary = c(-180, -87, 180, 87), inner.margins = .05) +
tm_legend(position=c("left", "bottom"), bg.color="grey95", frame=TRUE)

Example to illustrate the type of titles
tm_shape(World) +
tm_polygons(c("income_grp", "economy"), title = c("Legend Title 1", "Legend Title 2")) +
tm_layout(main.title = "Main Title",
main.title.position = "center",
main.title.color = "blue",
title = c("Title 1", "Title 2"),
title.color = "red",
panel.labels = c("Panel Label 1", "Panel Label 2"),
panel.label.color = "purple",
legend.text.color = "brown")

Not run:

../doc/tmap-getstarted.html

tm_lines 71

global option tmap.style demo

get current style
current.style <- tmap_style()

qtm(World, fill = "economy", format = "World")

tmap_style("col_blind")
qtm(World, fill = "economy", format = "World")

tmap_style("cobalt")
qtm(World, fill = "economy", format = "World")

set to current style
tmap_style(current.style)

End(Not run)

TIP: check out these examples in view mode, enabled with tmap_mode("view")

tm_lines Draw spatial lines

Description

Creates a tmap-element that draw spatial lines.

Usage

tm_lines(
col = NA,
lwd = 1,
lty = "solid",
alpha = NA,
scale = 1,
lwd.legend = NULL,
lwd.legend.labels = NULL,
lwd.legeld.col = NA,
n = 5,
style = ifelse(is.null(breaks), "pretty", "fixed"),
style.args = list(),
as.count = NA,
breaks = NULL,
interval.closure = "left",
palette = NULL,
labels = NULL,
drop.levels = FALSE,
midpoint = NULL,

72 tm_lines

stretch.palette = TRUE,
contrast = NA,
colorNA = NA,
textNA = "Missing",
showNA = NA,
colorNULL = NA,
title.col = NA,
title.lwd = NA,
legend.col.show = TRUE,
legend.lwd.show = TRUE,
legend.format = list(),
legend.col.is.portrait = TRUE,
legend.lwd.is.portrait = FALSE,
legend.col.reverse = FALSE,
legend.lwd.reverse = FALSE,
legend.hist = FALSE,
legend.hist.title = NA,
legend.col.z = NA,
legend.lwd.z = NA,
legend.hist.z = NA,
id = NA,
interactive = TRUE,
popup.vars = NA,
popup.format = list(),
zindex = NA,
group = NA,
auto.palette.mapping = NULL,
max.categories = NULL,
...

)

Arguments

col color of the lines. Either a color value or a data variable name. If multiple values
are specified, small multiples are drawn (see details).

lwd line width. Either a numeric value or a data variable. In the latter case, the class
of the highest values (see style) will get the line width defined by scale. If
multiple values are specified, small multiples are drawn (see details).

lty line type.

alpha transparency number between 0 (totally transparent) and 1 (not transparent). By
default, the alpha value of the col is used (normally 1).

scale line width multiplier number.

lwd.legend vector of line widths that are shown in the legend. By default, this is determined
automatically.

lwd.legend.labels

vector of labels for that correspond to lwd.legend.

tm_lines 73

lwd.legeld.col color of lines that are shown in the legend for the lwd aesthetic. By default, the
middle color of the palette is taken.

n preferred number of color scale classes. Only applicable when lwd is the name
of a numeric variable.

style method to process the color scale when col is a numeric variable. Discrete
gradient options are "cat", "fixed", "sd", "equal", "pretty", "quantile",
"kmeans", "hclust", "bclust", "fisher", "jenks", "dpih", "headtails",
and "log10_pretty". A numeric variable is processed as a categorical variable
when using "cat", i.e. each unique value will correspond to a distinct category.
For the other discrete gradient options (except "log10_pretty"), see the de-
tails in classIntervals (extra arguments can be passed on via style.args).
Continuous gradient options are "cont", "order", and "log10". The first maps
the values of col to a smooth gradient, the second maps the order of values
of col to a smooth gradient, and the third uses a logarithmic transformation.
The numeric variable can be either regarded as a continuous variable or a count
(integer) variable. See as.count.

style.args arguments passed on to classIntervals, the function that determine color
classes (see also style).

as.count when col is a numeric variable, should it be processed as a count variable? For
instance, if style = "pretty", n = 2, and the value range of the variable is 0 to
10, then the column classes for as.count = TRUE are 0; 1 to 5; 6 to 10 (note that
0 is regarded as an own category) whereas for as.count = FALSE they are 0 to 5;
5 to 10. Only applicable if style is "pretty", "fixed", or "log10_pretty".
By default, TRUE if style is one of these, and the variable is an integer.

breaks in case style=="fixed", breaks should be specified. The breaks argument can
also be used when style="cont". In that case, the breaks are mapped evenly to
the sequential or diverging color palette.

interval.closure

value that determines whether where the intervals are closed: "left" or "right".
Only applicable if col is a numeric variable. If as.count = TRUE, inverval.closure
is always set to "left".

palette a palette name or a vector of colors. See tmaptools::palette_explorer() for
the named palettes. Use a "-" as prefix to reverse the palette. The default palette
is taken from tm_layout’s argument aes.palette, which typically depends on
the style. The type of palette from aes.palette is automatically determined,
but can be overwritten: use "seq" for sequential, "div" for diverging, and "cat"
for categorical.

labels labels of the classes

drop.levels should unused classes be omitted? FALSE by default.

midpoint The value mapped to the middle color of a diverging palette. By default it is set
to 0 if negative and positive values are present. In that case, the two sides of the
color palette are assigned to negative respectively positive values. If all values
are positive or all values are negative, then the midpoint is set to NA, which
means that the value that corresponds to the middle color class (see style) is
mapped to the middle color. Only applies when col is a numeric variable. If it

74 tm_lines

is specified for sequential color palettes (e.g. "Blues"), then this color palette
will be treated as a diverging color palette.

stretch.palette

Logical that determines whether the categorical color palette should be stretched
if there are more categories than colors. If TRUE (default), interpolated colors are
used (like a rainbow). If FALSE, the palette is repeated.

contrast vector of two numbers that determine the range that is used for sequential and
diverging palettes (applicable when auto.palette.mapping=TRUE). Both num-
bers should be between 0 and 1. The first number determines where the palette
begins, and the second number where it ends. For sequential palettes, 0 means
the brightest color, and 1 the darkest color. For diverging palettes, 0 means the
middle color, and 1 both extremes. If only one number is provided, this number
is interpreted as the endpoint (with 0 taken as the start).

colorNA color used for missing values. Use NULL for transparency.

textNA text used for missing values.

showNA logical that determines whether missing values are named in the legend. By
default (NA), this depends on the presence of missing values.

colorNULL colour for polygons that are shown on the map that are out of scope

title.col title of the legend element regarding the line colors

title.lwd title of the legend element regarding the line widths
legend.col.show

logical that determines whether the legend for the line colors is shown
legend.lwd.show

logical that determines whether the legend for the line widths is shown

legend.format list of formatting options for the legend numbers. Only applicable if labels is
undefined. Parameters are:

fun Function to specify the labels. It should take a numeric vector, and should
return a character vector of the same size. By default it is not specified. If
specified, the list items scientific, format, and digits (see below) are
not used.

scientific Should the labels be formatted scientifically? If so, square brackets
are used, and the format of the numbers is "g". Otherwise, format="f",
and text.separator, text.less.than, and text.or.more are used. Also,
the numbers are automatically rounded to millions or billions if applicable.

format By default, "f", i.e. the standard notation xxx.xxx, is used. If scientific=TRUE
then "g", which means that numbers are formatted scientifically, i.e. n.dddE+nn
if needed to save space.

digits Number of digits after the decimal point if format="f", and the number
of significant digits otherwise.

big.num.abbr Vector that defines whether and which abbrevations are used for
large numbers. It is a named numeric vector, where the name indicated the
abbreviation, and the number the magnitude (in terms on numbers of zero).
Numbers are only abbrevation when they are large enough. Set it to NA to
disable abbrevations. The default is c("mln" = 6, "bln" = 9). For layers
where style is set to log10 or log10_pretty, the default is NA.

tm_lines 75

prefix Prefix of each number
suffix Suffix of each number
text.separator Character string to use to separate numbers in the legend (de-

fault: "to").
text.less.than Character value(s) to use to translate "Less than". When a char-

acter vector of length 2 is specified, one for each word, these words are
aligned when text.to.columns = TRUE

text.or.more Character value(s) to use to translate "or more". When a character
vector of length 2 is specified, one for each word, these words are aligned
when text.to.columns = TRUE

text.align Value that determines how the numbers are aligned, "left", "center"
or "right". By default "left" for legends in portrait format (legend.is.protrait
= TRUE), and "center" otherwise.

text.to.columns Logical that determines whether the text is aligned to three
columns (from, text.separator, to). By default FALSE.

html.escape Logical that determins whther HTML code is escaped in the pop-
ups in view mode. By default TRUE. If set to FALSE HTML code can be
added, e.g. to added white space via .

... Other arguments passed on to formatC

legend.col.is.portrait

logical that determines whether the legend element regarding the line colors is
in portrait mode (TRUE) or landscape (FALSE)

legend.lwd.is.portrait

logical that determines whether the legend element regarding the line widths is
in portrait mode (TRUE) or landscape (FALSE)

legend.col.reverse

logical that determines whether the items of the legend regarding the line colors
sizes are shown in reverse order, i.e. from bottom to top when legend.col.is.portrait
= TRUE and from right to left when legend.col.is.portrait = FALSE

legend.lwd.reverse

logical that determines whether the items of the legend regarding the line widths
are shown in reverse order, i.e. from bottom to top when legend.lwd.is.portrait
= TRUE and from right to left when legend.lwd.is.portrait = FALSE

legend.hist logical that determines whether a histogram is shown regarding the line colors
legend.hist.title

title for the histogram. By default, one title is used for both the histogram and
the normal legend for line colors.

legend.col.z index value that determines the position of the legend element regarding the line
colors with respect to other legend elements. The legend elements are stacked
according to their z values. The legend element with the lowest z value is placed
on top.

legend.lwd.z index value that determines the position of the legend element regarding the line
widths. (See legend.col.z)

legend.hist.z index value that determines the position of the legend element regarding the
histogram. (See legend.col.z)

76 tm_lines

id name of the data variable that specifies the indices of the lines. Only used for
"view" mode (see tmap_mode).

interactive logical that determines whether this layer is interactive in view mode (e.g. hover
text, popup, and click event in shiny apps)

popup.vars names of data variables that are shown in the popups in "view" mode. If NA
(default), only aesthetic variables (i.e. specified by col and lwd) are shown).
If they are not specified, all variables are shown. Set popup.vars to FALSE to
disable popups. When a vector of variable names is provided, the names (if
specified) are printed in the popups.

popup.format list of formatting options for the popup values. See the argument legend.format
for options. Only applicable for numeric data variables. If one list of formatting
options is provided, it is applied to all numeric variables of popup.vars. Also, a
(named) list of lists can be provided. In that case, each list of formatting options
is applied to the named variable.

zindex zindex of the pane in view mode. By default, it is set to the layer number plus
400. By default, the tmap layers will therefore be placed in the custom panes
"tmap401", "tmap402", etc., except for the base tile layers, which are placed in
the standard "tile". This parameter determines both the name of the pane and
the z-index, which determines the pane order from bottom to top. For instance,
if zindex is set to 500, the pane will be named "tmap500".

group name of the group to which this layer belongs in view mode. Each group can
be selected or deselected in the layer control item. Set group = NULL to hide the
layer in the layer control item. By default, it will be set to the name of the shape
(specified in tm_shape).

auto.palette.mapping

deprecated. It has been replaced by midpoint for numeric variables and stretch.palette
for categorical variables.

max.categories deprecated. It has moved to tmap_options.

... these arguments are passed on to classIntervals, the function that determine
color classes (see also style).

Details

Small multiples can be drawn in two ways: either by specifying the by argument in tm_facets, or
by defining multiple variables in the aesthetic arguments. The aesthetic arguments of tm_lines are
col and lwd. In the latter case, the arguments, except for the ones starting with legend., can be
specified for small multiples as follows. If the argument normally only takes a single value, such
as n, then a vector of those values can be specified, one for each small multiple. If the argument
normally can take a vector, such as palette, then a list of those vectors (or values) can be specified,
one for each small multiple.

Value

tmap-element

tm_logo 77

References

Tennekes, M., 2018, tmap: Thematic Maps in R, Journal of Statistical Software, 84(6), 1-39,
doi: 10.18637/jss.v084.i06

See Also

vignette("tmap-getstarted")

Examples

data(World, rivers)

qtm(rivers)

Not run:
tm_shape(World) +

tm_fill() +
tm_shape(rivers) +

tm_lines(col="black", lwd="scalerank", scale=2, legend.lwd.show = FALSE) +
tm_style("cobalt", title = "Rivers of the World") +
tm_format("World")

End(Not run)

tm_logo Logo

Description

Creates a map logo. Multiple logos can be specified which are shown next to each other. Logos
placed on top of each other can be specified with stacking tm_logo elements.

Usage

tm_logo(
file,
height = 3,
halign = "center",
margin = 0.2,
position = NA,
just = NA

)

Arguments

file either a filename or url of a png image. If multiple files/urls are provided with a
character vector, the logos are placed near each other. To specify logos for small
multiples use a list of character values/vectors. In order to stack logos vertically,
multiple tm_logo elements can be stacked.

https://doi.org/10.18637/jss.v084.i06
../doc/tmap-getstarted.html

78 tm_minimap

height height of the logo in number of text line heights. The width is scaled based the
height and the aspect ratio of the logo. If multiple logos are specified by a vector
or list, the heights can be specified accordingly.

halign if logos in one row have different heights, halign specifies the vertical align-
ment. Possible values are "top", "center" and "bottom".

margin margin around the logo in number of text line heights.

position position of the logo. Vector of two values, specifying the x and y coordinates.
Either this vector contains "left", "LEFT", "center", "right", or "RIGHT" for the
first value and "top", "TOP", "center", "bottom", or "BOTTOM" for the second
value, or this vector contains two numeric values between 0 and 1 that specifies
the x and y value of the center of the text. The uppercase values correspond
to the position without margins (so tighter to the frame). The default value is
controlled by the argument "attr.position" of tm_layout.

just Justification of the attribute relative to the point coordinates. The first value
specifies horizontal and the second value vertical justification. Possible values
are: "left" , "right", "center", "bottom", and "top". Numeric values of
0 specify left/bottom alignment and 1 right/top alignment. This option is only
used, if position is specified by numeric coordinates. The default value is
controlled by the argument "attr.just" of tm_layout.

Examples

Not run:
data(NLD_muni, NLD_prov)

tm_shape(NLD_muni) +
tm_polygons("origin_native", border.alpha=0.5, style="cont", title="Native Dutch (%)") +
tm_logo("http://statline.cbs.nl/Statweb/Images/cbs_logo.png",

position=c("left", "bottom"), height = 2) +
tm_layout(bg.color="gray98")

data(World)

tm_shape(World) +
tm_polygons("HPI", palette="RdYlGn") +
tm_logo(c("https://www.r-project.org/logo/Rlogo.png",

system.file("img/tmap.png", package="tmap"))) +
tm_logo("http://blog.kulikulifoods.com/wp-content/uploads/2014/10/logo.png",

height=5, position = c("left", "top")) +
tm_format("World")

End(Not run)

tm_minimap Minimap

tm_mouse_coordinates 79

Description

Creates a minimap in view mode. See addMiniMap.

Usage

tm_minimap(server = NA, position = c("left", "bottom"), toggle = TRUE, ...)

Arguments

server name of the provider or an URL (see tm_tiles). By default, it shows the same
map as the basemap, and moreover, it will automatically change when the user
switches basemaps. Note the latter does not happen when server is specified.

position position of the scale bar Vector of two values, specifying the x and y coordinates.
The first is either "left" or "right", the second either "top" or "bottom".

toggle should the minimap have a button to minimise it? By default TRUE.

... arguments passed on to addMiniMap.

See Also

addMiniMap

tm_mouse_coordinates Mouse coordinates

Description

Adds mouse coordinates in view mode. See addMouseCoordinates.

Usage

tm_mouse_coordinates()

See Also

addMouseCoordinates

80 tm_raster

tm_raster Draw a raster

Description

Creates a tmap-element that draws a raster. For coloring, there are three options: 1) a fixed color
is used, 2) a color palette is mapped to a data variable, 3) RGB values are used. The function
tm_raster is designed for options 1 and 2, while tm_rgb is used for option 3.

Usage

tm_raster(
col = NA,
alpha = NA,
palette = NULL,
n = 5,
style = ifelse(is.null(breaks), "pretty", "fixed"),
style.args = list(),
as.count = NA,
breaks = NULL,
interval.closure = "left",
labels = NULL,
drop.levels = FALSE,
midpoint = NULL,
stretch.palette = TRUE,
contrast = NA,
saturation = 1,
interpolate = NA,
colorNA = NULL,
textNA = "Missing",
showNA = NA,
colorNULL = NULL,
title = NA,
legend.show = TRUE,
legend.format = list(),
legend.is.portrait = TRUE,
legend.reverse = FALSE,
legend.hist = FALSE,
legend.hist.title = NA,
legend.z = NA,
legend.hist.z = NA,
zindex = NA,
group = NA,
auto.palette.mapping = NULL,
max.categories = NULL,
max.value = 255

)

tm_raster 81

tm_rgb(
r = 1,
g = 2,
b = 3,
alpha = NA,
saturation = 1,
interpolate = TRUE,
max.value = 255,
...

)

tm_rgba(
r = 1,
g = 2,
b = 3,
a = 4,
alpha = NA,
saturation = 1,
interpolate = TRUE,
max.value = 255,
...

)

Arguments

col three options: the name of a data variable that is contained in shp, the name
of a variable in shp that contain color values, a single color value. In the first
case the values (numeric or categorical) that will be depicted by a color palette
(see palette. If multiple values are specified, small multiples are drawn (see
details). By default, it is a vector of the names of all data variables unless the
by argument of tm_facets is defined (in that case, the default color of dots is
taken from the tmap option aes.color). If the shape (stars object) contains a
third dimension, small multiples are created per 3rd dimension value). Note that
the number of small multiples is limited by tmap_options("limits")).

alpha transparency number between 0 (totally transparent) and 1 (not transparent). By
default, the alpha value of the col is used (normally 1).

palette a palette name or a vector of colors. See tmaptools::palette_explorer() for
the named palettes. Use a "-" as prefix to reverse the palette. The default palette
is taken from tm_layout’s argument aes.palette, which typically depends on
the style. The type of palette from aes.palette is automatically determined,
but can be overwritten: use "seq" for sequential, "div" for diverging, and "cat"
for categorical.

n preferred number of classes (in case col is a numeric variable)

style method to process the color scale when col is a numeric variable. Discrete
gradient options are "cat", "fixed", "sd", "equal", "pretty", "quantile",
"kmeans", "hclust", "bclust", "fisher", "jenks", "dpih", "headtails",
and "log10_pretty". A numeric variable is processed as a categorical variable

82 tm_raster

when using "cat", i.e. each unique value will correspond to a distinct category.
For the other discrete gradient options (except "log10_pretty"), see the de-
tails in classIntervals (extra arguments can be passed on via style.args).
Continuous gradient options are "cont", "order", and "log10". The first maps
the values of col to a smooth gradient, the second maps the order of values
of col to a smooth gradient, and the third uses a logarithmic transformation.
The numeric variable can be either regarded as a continuous variable or a count
(integer) variable. See as.count.

style.args arguments passed on to classIntervals, the function that determine color
classes (see also style).

as.count when col is a numeric variable, should it be processed as a count variable? For
instance, if style = "pretty", n = 2, and the value range of the variable is 0 to
10, then the column classes for as.count = TRUE are 0; 1 to 5; 6 to 10 (note that
0 is regarded as an own category) whereas for as.count = FALSE they are 0 to 5;
5 to 10. Only applicable if style is "pretty", "fixed", or "log10_pretty".
By default, TRUE if style is one of these, and the variable is an integer.

breaks in case style=="fixed", breaks should be specified. The breaks argument can
also be used when style="cont". In that case, the breaks are mapped evenly to
the sequential or diverging color palette.

interval.closure

value that determines whether where the intervals are closed: "left" or "right".
Only applicable if col is a numeric variable. If as.count = TRUE, inverval.closure
is always set to "left".

labels labels of the classes
drop.levels should unused classes be omitted? FALSE by default.
midpoint The value mapped to the middle color of a diverging palette. By default it is set

to 0 if negative and positive values are present. In that case, the two sides of the
color palette are assigned to negative respectively positive values. If all values
are positive or all values are negative, then the midpoint is set to NA, which
means that the value that corresponds to the middle color class (see style) is
mapped to the middle color. Only applies when col is a numeric variable. If it
is specified for sequential color palettes (e.g. "Blues"), then this color palette
will be treated as a diverging color palette.

stretch.palette

Logical that determines whether the categorical color palette should be stretched
if there are more categories than colors. If TRUE (default), interpolated colors are
used (like a rainbow). If FALSE, the palette is repeated.

contrast vector of two numbers that determine the range that is used for sequential and
diverging palettes (applicable when auto.palette.mapping=TRUE). Both num-
bers should be between 0 and 1. The first number determines where the palette
begins, and the second number where it ends. For sequential palettes, 0 means
the brightest color, and 1 the darkest color. For diverging palettes, 0 means the
middle color, and 1 both extremes. If only one number is provided, this number
is interpreted as the endpoint (with 0 taken as the start).

saturation Number that determines how much saturation (also known as chroma) is used:
saturation=0 is greyscale and saturation=1 is normal. This saturation value
is multiplied by the overall saturation of the map (see tm_layout).

tm_raster 83

interpolate Should the raster image be interpolated? By default FALSE for tm_raster and
TRUE for tm_rgb.

colorNA color used for missing values. Use NULL for transparency.

textNA text used for missing values.

showNA logical that determines whether missing values are named in the legend. By
default (NA), this depends on the presence of missing values.

colorNULL colour for polygons that are shown on the map that are out of scope

title title of the legend element

legend.show logical that determines whether the legend is shown

legend.format list of formatting options for the legend numbers. Only applicable if labels is
undefined. Parameters are:

fun Function to specify the labels. It should take a numeric vector, and should
return a character vector of the same size. By default it is not specified. If
specified, the list items scientific, format, and digits (see below) are
not used.

scientific Should the labels be formatted scientifically? If so, square brackets
are used, and the format of the numbers is "g". Otherwise, format="f",
and text.separator, text.less.than, and text.or.more are used. Also,
the numbers are automatically rounded to millions or billions if applicable.

format By default, "f", i.e. the standard notation xxx.xxx, is used. If scientific=TRUE
then "g", which means that numbers are formatted scientifically, i.e. n.dddE+nn
if needed to save space.

digits Number of digits after the decimal point if format="f", and the number
of significant digits otherwise.

big.num.abbr Vector that defines whether and which abbrevations are used for
large numbers. It is a named numeric vector, where the name indicated the
abbreviation, and the number the magnitude (in terms on numbers of zero).
Numbers are only abbrevation when they are large enough. Set it to NA to
disable abbrevations. The default is c("mln" = 6, "bln" = 9). For layers
where style is set to log10 or log10_pretty, the default is NA.

prefix Prefix of each number
suffix Suffix of each number
text.separator Character string to use to separate numbers in the legend (de-

fault: "to").
text.less.than Character value(s) to use to translate "Less than". When a char-

acter vector of length 2 is specified, one for each word, these words are
aligned when text.to.columns = TRUE

text.or.more Character value(s) to use to translate "or more". When a character
vector of length 2 is specified, one for each word, these words are aligned
when text.to.columns = TRUE

text.align Value that determines how the numbers are aligned, "left", "center"
or "right". By default "left" for legends in portrait format (legend.is.protrait
= TRUE), and "center" otherwise.

text.to.columns Logical that determines whether the text is aligned to three
columns (from, text.separator, to). By default FALSE.

84 tm_raster

html.escape Logical that determins whther HTML code is escaped in the pop-
ups in view mode. By default TRUE. If set to FALSE HTML code can be
added, e.g. to added white space via .

... Other arguments passed on to formatC

legend.is.portrait

logical that determines whether the legend is in portrait mode (TRUE) or land-
scape (FALSE)

legend.reverse logical that determines whether the items of the legend regarding the text sizes
are shown in reverse order, i.e. from bottom to top when legend.is.portrait
= TRUE and from right to left when legend.is.portrait = FALSE

legend.hist logical that determines whether a histogram is shown
legend.hist.title

title for the histogram. By default, one title is used for both the histogram and
the normal legend.

legend.z index value that determines the position of the legend element with respect to
other legend elements. The legend elements are stacked according to their z
values. The legend element with the lowest z value is placed on top.

legend.hist.z index value that determines the position of the histogram legend element

zindex zindex of the pane in view mode. By default, it is set to the layer number plus
400. By default, the tmap layers will therefore be placed in the custom panes
"tmap401", "tmap402", etc., except for the base tile layers, which are placed in
the standard "tile". This parameter determines both the name of the pane and
the z-index, which determines the pane order from bottom to top. For instance,
if zindex is set to 500, the pane will be named "tmap500".

group name of the group to which this layer belongs in view mode. Each group can
be selected or deselected in the layer control item. Set group = NULL to hide the
layer in the layer control item. By default, it will be set to the name of the shape
(specified in tm_shape).

auto.palette.mapping

deprecated. It has been replaced by midpoint for numeric variables and stretch.palette
for categorical variables.

max.categories deprecated. It has moved to tmap_options.

max.value for tm_rgb, what is the maximum value per layer? By default 255.

r raster band for the red channel. It should be an integer between 1 and the number
of raster layers.

g raster band for the green channel. It should be an integer between 1 and the
number of raster layers.

b raster band for the blue channel. It should be an integer between 1 and the
number of raster layers.

... arguments passed on from tm_rgb and tm_rgba to tm_raster.

a raster band for the alpha channel. It should be an integer between 1 and the
number of raster layers.

tm_raster 85

Details

Small multiples can be drawn in two ways: either by specifying the by argument in tm_facets, or
by defining multiple variables in the aesthetic arguments. The aesthetic argument of tm_raster is
col. In the latter case, the arguments, except for the ones starting with legend., can be specified
for small multiples as follows. If the argument normally only takes a single value, such as n, then a
vector of those values can be specified, one for each small multiple. If the argument normally can
take a vector, such as palette, then a list of those vectors (or values) can be specified, one for each
small multiple.

Value

tmap-element

References

Tennekes, M., 2018, tmap: Thematic Maps in R, Journal of Statistical Software, 84(6), 1-39,
doi: 10.18637/jss.v084.i06

See Also

vignette("tmap-getstarted")

Examples

data(World, land, metro)

pal8 <- c("#33A02C", "#B2DF8A", "#FDBF6F", "#1F78B4", "#999999", "#E31A1C", "#E6E6E6", "#A6CEE3")
tm_shape(land, ylim = c(-88,88)) +

tm_raster("cover_cls", palette = pal8, title = "Global Land Cover") +
tm_shape(metro) + tm_dots(col = "#E31A1C") +
tm_shape(World) +

tm_borders(col = "black") +
tm_layout(scale = .8,
legend.position = c("left","bottom"),

legend.bg.color = "white", legend.bg.alpha = .2,
legend.frame = "gray50")

Not run:
pal20 <- c("#003200", "#3C9600", "#006E00", "#556E19", "#00C800", "#8CBE8C",

"#467864", "#B4E664", "#9BC832", "#EBFF64", "#F06432", "#9132E6",
"#E664E6", "#9B82E6", "#B4FEF0", "#646464", "#C8C8C8", "#FF0000",
"#FFFFFF", "#5ADCDC")

tm_shape(land) +
tm_raster("cover", palette = pal20, title = "Global Land Cover") +
tm_layout(scale=.8, legend.position = c("left","bottom"))

End(Not run)

tm_shape(land, ylim = c(-88,88)) +
tm_raster("trees", palette = "Greens", title = "Percent Tree Cover") +

https://doi.org/10.18637/jss.v084.i06
../doc/tmap-getstarted.html

86 tm_scale_bar

tm_shape(World) +
tm_borders() +

tm_layout(legend.position = c("left", "bottom"), bg.color = "lightblue")

Not run:
tm_shape(land) +
tm_raster("black") +
tm_facets(by="cover_cls")

End(Not run)

TIP: check out these examples in view mode, enabled with tmap_mode("view")

tm_scale_bar Scale bar

Description

Creates a scale bar. By default, the coordinate units are assumed to be meters, and the map units in
kilometers. This can be changed in tm_shape.

Usage

tm_scale_bar(
breaks = NULL,
width = NA,
text.size = 0.5,
text.color = NA,
color.dark = "black",
color.light = "white",
lwd = 1,
position = NA,
bg.color = NA,
bg.alpha = NA,
just = NA,
size = NULL

)

Arguments

breaks breaks of the scale bar. If not specified, breaks will be automatically be chosen
given the prefered width of the scale bar. Not available for view mode.

width (preferred) width of the scale bar. Only applicable when breaks=NULL. In plot
mode, it corresponds the relative width; the default is 0.25 so one fourth of the
map width. In view mode, it corresponds to the width in pixels; the default is
100.

text.size relative text size (which is upperbound by the available label width)

tm_sf 87

text.color color of the text. By default equal to the argument attr.color of tm_layout.

color.dark color of the dark parts of the scale bar, typically (and by default) black.

color.light color of the light parts of the scale bar, typically (and by default) white.

lwd line width of the scale bar

position position of the scale bar Vector of two values, specifying the x and y coordinates.
Either this vector contains "left", "LEFT", "center", "right", or "RIGHT" for the
first value and "top", "TOP", "center", "bottom", or "BOTTOM" for the second
value, or this vector contains two numeric values between 0 and 1 that specifies
the x and y value of the left bottom corner of the scale bar. The uppercase values
correspond to the position without margins (so tighter to the frame). The default
value is controlled by the argument "attr.position" of tm_layout.

bg.color Background color

bg.alpha Transparency of the background color. Number between 0 (totally transparent)
and 1 (not transparent). By default, the alpha value of the bg.color is used
(normally 1).

just Justification of the attribute relative to the point coordinates. The first value
specifies horizontal and the second value vertical justification. Possible values
are: "left" , "right", "center", "bottom", and "top". Numeric values of
0 specify left/bottom alignment and 1 right/top alignment. This option is only
used, if position is specified by numeric coordinates. The default value is
controlled by the argument "attr.just" of tm_layout.

size deprecated: renamed to text.size

Examples

current.mode <- tmap_mode("plot")

data(NLD_muni)
qtm(NLD_muni, theme = "NLD") + tm_scale_bar(position=c("left", "bottom"))

restore current mode
tmap_mode(current.mode)

tm_sf Draw simple features

Description

Creates a tmap-element that draws simple features. Basically, it is a stack of tm_polygons,
tm_lines and tm_dots. In other words, polygons are plotted as polygons, lines as lines and points
as dots.

88 tm_sf

Usage

tm_sf(
col = NA,
size = 0.02,
shape = 19,
lwd = 1,
lty = "solid",
alpha = NA,
palette = NULL,
border.col = NA,
border.lwd = 1,
border.lty = "solid",
border.alpha = NA,
group = NA,
...

)

Arguments

col color of the simple features. See the col argument of tm_polygons, tm_lines
and tm_symbols.

size size of the dots. See the size argument tm_symbols. By default, the size is
similar to dot size (see tm_dots)

shape shape of the dots. See the shape argument tm_symbols. By default, dots are
shown.

lwd width of the lines. See the lwd argument of tm_lines

lty type of the lines. See the lty argument of tm_lines

alpha transparency number. See alpha argument of tm_polygons, tm_lines and
tm_symbols

palette palette. See palette argument of tm_polygons, tm_lines and tm_symbols

border.col color of the borders. See border.col argument of tm_polygons and tm_symbols.

border.lwd line width of the borders. See border.lwd argument of tm_polygons and
tm_symbols.

border.lty line type of the borders. See border.lwd argument of tm_polygons and tm_symbols.

border.alpha transparency of the borders. See border.alpha argument of tm_polygons and
tm_symbols.

group name of the group to which this layer belongs in view mode. Each group can
be selected or deselected in the layer control item. Set group = NULL to hide the
layer in the layer control item. By default, it will be set to the name of the shape
(specified in tm_shape).

... other arguments passed on to tm_polygons, tm_lines and tm_symbols

Value

tmap-element

tm_shape 89

See Also

vignette("tmap-getstarted")

Examples

data(World)

World$geometry[World$continent == "Africa"] <-
sf::st_centroid(World$geometry[World$continent == "Africa"])

World$geometry[World$continent == "South America"] <-
sf::st_cast(World$geometry[World$continent == "South America"],
"MULTILINESTRING", group_or_split = FALSE)

tm_shape(World) +
tm_sf()

tm_shape Specify the shape object

Description

Creates a tmap-element that specifies a spatial data object, which we refer to as shape. Also the
projection and covered area (bounding box) can be set. It is possible to use multiple shape objects
within one plot (see tmap-element).

Usage

tm_shape(
shp,
name = NULL,
is.master = NA,
projection = NULL,
bbox = NULL,
unit = NULL,
simplify = 1,
point.per = NA,
line.center = "midpoint",
filter = NULL,
raster.downsample = TRUE,
raster.warp = TRUE,
...

)

Arguments

shp shape object, which is an object from a class defined by the sf or stars package.
Objects from the packages sp and raster are also supported, but discouraged.

../doc/tmap-getstarted.html

90 tm_shape

name name of the shape object (character) as it appears in the legend in "view" mode.
Default value is the name of shp.

is.master logical that determines whether this tm_shape is the master shape element. The
bounding box, projection settings, and the unit specifications of the resulting
thematic map are taken from the tm_shape element of the master shape object.
By default, the first master shape element with a raster shape is the master, and
if there are no raster shapes used, then the first tm_shape is the master shape
element.

projection Map projection (CRS). Either a crs object or a character value (PROJ.4 char-
acter string). By default, the projection is used that is defined in the shp object
itself.

bbox bounding box. One of the following:
• A bounding box (an sf bbox object, see st_bbox, or any object that can be

read by bb.
• Open Street Map search query. The bounding is automatically generated

by querying q from Open Street Map Nominatim. See https://wiki.
openstreetmap.org/wiki/Nominatim.

• Another shape object, from which the bounding box is extracted.
If unspecified, the current bounding box of shp is taken. The bounding box is
feed to bb (as argument x. The other arguments of bb can be specified directly
as well (see ..).

unit desired units of the map. One of "metric" (default), "imperial", "km", "m",
"mi" and "ft". Used to specify the scale bar (see tm_scale_bar) and to calcu-
late densities for choropleths (see argument convert2density in tm_fill).

simplify simplification factor for spatial polygons and spatial lines. A number between 0
and 1 that indicates how many coordinates are kept. See the underlying function
simplify_shape, from which the arguments keep.units and keep.subunits
can be passed on (see ...). This requires the suggested package rmapshaper.

point.per specification of how points or text labels are plotted when the geometry is a
multi line or a multi polygon. One of "feature", "segment" or "largest".
The first generates a point/label for every feature, the second for every segment
(i.e. subfeature), the third only for the largest segment (subfeature). Note that
the last two options can be significant slower. By default, it is set to "segment"
if the geometry of shp is a (multi)points geometry or a geometrycollection, and
"feature" otherwise.

line.center specification of where points are placed for (multi)line geometries. Either "midpoint"
or "centroid". The former places a point at the middle of the line, the latter at
the controid.

filter logical vector which indicated per feature whether it should be included. Fea-
tures for which filter is FALSE will be colored light gray (see the colorNULL
argument in the layer functions)

raster.downsample

Should a raster shape (i.e. stars object) be downsampled when it is loo large?
What is too large is determined by the tmap option max.raster (see tmap_options).
If it is downsampled, it will be downsampled to approximately max.raster
cells. A message will be shown with the exact size.

https://wiki.openstreetmap.org/wiki/Nominatim
https://wiki.openstreetmap.org/wiki/Nominatim

tm_shape 91

raster.warp Should a raster shape (i.e. stars object) be warped when the map is shown
in different map projection (CRS)? If TRUE (default) the raster is warped to a
regular grid in the new projection. Otherwise, the raster shape is transformed
where the original raster cells are kept intact. Warping a raster is much faster
than transforming. Note that any raster shape with a projection other than 4326
will have to be warped or transformed in view mode.

... Arguments passed on to bb (e.g. ext can be used to enlarge or shrinke a bound-
ing box), and simplify_shape (the arguments keep.units and keep.subunits)

Value

tmap-element

References

Tennekes, M., 2018, tmap: Thematic Maps in R, Journal of Statistical Software, 84(6), 1-39,
doi: 10.18637/jss.v084.i06

See Also

vignette("tmap-getstarted")

Examples

current.mode <- tmap_mode("plot")

data(World, metro, rivers)

tm_shape(World) +
tm_polygons() +

tm_layout("Long lat coordinates (WGS84)", inner.margins=c(0,0,.1,0), title.size=.8)

World$highlighted <- ifelse(World$iso_a3 %in% c("GRL", "AUS"), "gold", "gray75")
tm_shape(World, projection=3857, ylim=c(.1, 1), relative = TRUE) +

tm_polygons("highlighted") +
tm_layout("Web Mercator projection. Although widely used, it is discouraged for
statistical purposes. In reality, Australia is 3 times larger than Greenland!",

inner.margins=c(0,0,.1,0), title.size=.6)

tm_shape(World, projection="+proj=robin") +
tm_polygons() +

tm_layout(
"Winkel-Tripel projection, adapted as default by the National Geographic Society for world maps.",

inner.margins=c(0,0,.1,0), title.size=.8)

tm_shape(World, projection="+proj=eck4") +
tm_polygons() +

tm_layout("Eckhart IV projection. Recommended in statistical maps for its equal-area property.",
inner.margins=c(0,0,.1,0), title.size=.8)

https://doi.org/10.18637/jss.v084.i06
../doc/tmap-getstarted.html

92 tm_symbols

different levels of simplification
Not run:
tm1 <- tm_shape(World, projection="+proj=eck4", simplify = 0.05) + tm_polygons() +

tm_layout("Simplification: 0.05")
tm2 <- tm_shape(World, projection="+proj=eck4", simplify = 0.1) + tm_polygons() +

tm_layout("Simplification: 0.1")
tm3 <- tm_shape(World, projection="+proj=eck4", simplify = 0.25) + tm_polygons() +

tm_layout("Simplification: 0.25")
tm4 <- tm_shape(World, projection="+proj=eck4", simplify = 0.5) + tm_polygons() +

tm_layout("Simplification: 0.5")

require(tmaptools)
tmap_arrange(tm1, tm2, tm3, tm4)

End(Not run)

three groups of layers, each starting with tm_shape
Not run:
tm_shape(World, projection="+proj=eck4") +

tm_fill("darkolivegreen3") +
tm_shape(metro) +

tm_bubbles("pop2010", col = "grey30", scale=.5) +
tm_shape(rivers) +

tm_lines("lightcyan1") +
tm_layout(bg.color="lightcyan1", inner.margins=c(0,0,.02,0), legend.show = FALSE)

End(Not run)

restore current mode
tmap_mode(current.mode)

tm_symbols Draw symbols

Description

Creates a tmap-element that draws symbols, including symbols and dots. The color, size, and
shape of the symbols can be mapped to data variables.

Usage

tm_symbols(
size = 1,
col = NA,
shape = 21,
alpha = NA,
border.col = NA,
border.lwd = 1,
border.alpha = NA,

tm_symbols 93

scale = 1,
perceptual = FALSE,
clustering = FALSE,
size.max = NA,
size.lim = NA,
sizes.legend = NULL,
sizes.legend.labels = NULL,
n = 5,
style = ifelse(is.null(breaks), "pretty", "fixed"),
style.args = list(),
as.count = NA,
breaks = NULL,
interval.closure = "left",
palette = NULL,
labels = NULL,
drop.levels = FALSE,
midpoint = NULL,
stretch.palette = TRUE,
contrast = NA,
colorNA = NA,
textNA = "Missing",
showNA = NA,
colorNULL = NA,
shapes = 21:25,
shapes.legend = NULL,
shapes.legend.fill = NA,
shapes.labels = NULL,
shapes.drop.levels = FALSE,
shapeNA = 4,
shape.textNA = "Missing",
shape.showNA = NA,
shapes.n = 5,
shapes.style = ifelse(is.null(shapes.breaks), "pretty", "fixed"),
shapes.style.args = list(),
shapes.as.count = NA,
shapes.breaks = NULL,
shapes.interval.closure = "left",
legend.max.symbol.size = 0.8,
just = NA,
jitter = 0,
xmod = 0,
ymod = 0,
icon.scale = 3,
grob.dim = c(width = 48, height = 48, render.width = 256, render.height = 256),
title.size = NA,
title.col = NA,
title.shape = NA,
legend.size.show = TRUE,

94 tm_symbols

legend.col.show = TRUE,
legend.shape.show = TRUE,
legend.format = list(),
legend.size.is.portrait = FALSE,
legend.col.is.portrait = TRUE,
legend.shape.is.portrait = TRUE,
legend.size.reverse = FALSE,
legend.col.reverse = FALSE,
legend.shape.reverse = FALSE,
legend.hist = FALSE,
legend.hist.title = NA,
legend.size.z = NA,
legend.col.z = NA,
legend.shape.z = NA,
legend.hist.z = NA,
id = NA,
interactive = TRUE,
popup.vars = NA,
popup.format = list(),
zindex = NA,
group = NA,
auto.palette.mapping = NULL,
max.categories = NULL

)

tm_squares(size = 1, col = NA, shape = 22, scale = 4/3, ...)

tm_bubbles(
size = 1,
col = NA,
shape = 21,
scale = 4/3,
legend.max.symbol.size = 1,
...

)

tm_dots(
col = NA,
size = 0.02,
shape = 19,
title = NA,
legend.show = TRUE,
legend.is.portrait = TRUE,
legend.z = NA,
...

)

tm_markers(

tm_symbols 95

shape = marker_icon(),
col = NA,
border.col = NULL,
clustering = TRUE,
text = NULL,
text.just = "top",
markers.on.top.of.text = TRUE,
group = NA,
...

)

Arguments

size a single value or a shp data variable that determines the symbol sizes. The refer-
ence value size=1 corresponds to the area of symbols that have the same height
as one line of text. If a data variable (which should be numeric) is provided, the
symbol area sizes are scaled proportionally (or perceptually, see perceptual)
where by default the symbol with the largest data value will get size=1 (see
also size.max). If multiple values are specified, small multiples are drawn (see
details).

col color(s) of the symbol. Either a color (vector), or categorical variable name(s).
If multiple values are specified, small multiples are drawn (see details).

shape shape(s) of the symbol. Either direct shape specification(s) or a data variable
name(s) that is mapped to the symbols specified by the shapes argument. Note
that the default shapes (specified by shapes) is not supported in "view" mode.
See details for the shape specification.

alpha transparency number between 0 (totally transparent) and 1 (not transparent). By
default, the alpha value of the col is used (normally 1).

border.col color of the symbol borders.

border.lwd line width of the symbol borders. If NA, no symbol borders are drawn.

border.alpha transparency number, regarding the symbol borders, between 0 (totally trans-
parent) and 1 (not transparent). By default, the alpha value of the col is used
(normally 1).

scale symbol size multiplier number.

perceptual by default (with perceptual = FALSE), the symbol area sizes are scaled pro-
portionally to the data variables. This is done by taking the square root of the
(normalized) data variable, since the plotting system (grid package) expects
size in radius rather than area. However, the perceived area of larger symbols
is often underestimated. Flannery (1971) experimentally derived a method to
compensate this for symbols, which is enabled by this argument; if perceptual
= TRUE, not the suqare root (power exponent 0.5) is taken, but power exponent
0.5716.

clustering value that determines whether the symbols are clustered in "view" mode. It
does not work proportional bubbles (i.e. tm_bubbles). One of: TRUE, FALSE, or
the output of markerClusterOptions.

96 tm_symbols

size.max value that is mapped to size=1. By default (NA), the maximum data value is
chosen. Only applicable when size is the name of a numeric variable of shp

size.lim vector of two limit values of the size variable. Only symbols are drawn whose
value is greater than or equal to the first value. Symbols whose values exceed the
second value are drawn at the size of the second value. Only applicable when
size is the name of a numeric variable of shp

sizes.legend vector of symbol sizes that are shown in the legend. By default, this is deter-
mined automatically.

sizes.legend.labels

vector of labels for that correspond to sizes.legend.

n preferred number of color scale classes. Only applicable when col is a numeric
variable name.

style method to process the color scale when col is a numeric variable. Discrete
gradient options are "cat", "fixed", "sd", "equal", "pretty", "quantile",
"kmeans", "hclust", "bclust", "fisher", "jenks", "dpih", "headtails",
and "log10_pretty". A numeric variable is processed as a categorical variable
when using "cat", i.e. each unique value will correspond to a distinct category.
For the other discrete gradient options (except "log10_pretty"), see the de-
tails in classIntervals (extra arguments can be passed on via style.args).
Continuous gradient options are "cont", "order", and "log10". The first maps
the values of col to a smooth gradient, the second maps the order of values
of col to a smooth gradient, and the third uses a logarithmic transformation.
The numeric variable can be either regarded as a continuous variable or a count
(integer) variable. See as.count.

style.args arguments passed on to classIntervals, the function that determine color
classes (see also style).

as.count when col is a numeric variable, should it be processed as a count variable? For
instance, if style = "pretty", n = 2, and the value range of the variable is 0 to
10, then the column classes for as.count = TRUE are 0; 1 to 5; 6 to 10 (note that
0 is regarded as an own category) whereas for as.count = FALSE they are 0 to 5;
5 to 10. Only applicable if style is "pretty", "fixed", or "log10_pretty".
By default, TRUE if style is one of these, and the variable is an integer.

breaks in case style=="fixed", breaks should be specified. The breaks argument can
also be used when style="cont". In that case, the breaks are mapped evenly to
the sequential or diverging color palette.

interval.closure

value that determines whether where the intervals are closed: "left" or "right".
Only applicable if col is a numeric variable. If as.count = TRUE, inverval.closure
is always set to "left".

palette a palette name or a vector of colors. See tmaptools::palette_explorer() for
the named palettes. Use a "-" as prefix to reverse the palette. The default palette
is taken from tm_layout’s argument aes.palette, which typically depends on
the style. The type of palette from aes.palette is automatically determined,
but can be overwritten: use "seq" for sequential, "div" for diverging, and "cat"
for categorical.

labels labels of the classes

tm_symbols 97

drop.levels should unused classes be omitted? FALSE by default.

midpoint The value mapped to the middle color of a diverging palette. By default it is set
to 0 if negative and positive values are present. In that case, the two sides of the
color palette are assigned to negative respectively positive values. If all values
are positive or all values are negative, then the midpoint is set to NA, which
means that the value that corresponds to the middle color class (see style) is
mapped to the middle color. Only applies when col is a numeric variable. If it
is specified for sequential color palettes (e.g. "Blues"), then this color palette
will be treated as a diverging color palette.

stretch.palette

Logical that determines whether the categorical color palette should be stretched
if there are more categories than colors. If TRUE (default), interpolated colors are
used (like a rainbow). If FALSE, the palette is repeated.

contrast vector of two numbers that determine the range that is used for sequential and
diverging palettes (applicable when auto.palette.mapping=TRUE). Both num-
bers should be between 0 and 1. The first number determines where the palette
begins, and the second number where it ends. For sequential palettes, 0 means
the brightest color, and 1 the darkest color. For diverging palettes, 0 means the
middle color, and 1 both extremes. If only one number is provided, this number
is interpreted as the endpoint (with 0 taken as the start).

colorNA colour for missing values. Use NULL for transparency.

textNA text used for missing values of the color variable.

showNA logical that determines whether missing values are named in the legend. By
default (NA), this depends on the presence of missing values.

colorNULL colour for polygons that are shown on the map that are out of scope

shapes palette of symbol shapes. Only applicable if shape is a (vector of) categorical
variable(s). See details for the shape specification. By default, the filled symbols
21 to 25 are taken.

shapes.legend symbol shapes that are used in the legend (instead of the symbols specified with
shape). These shapes will be used in the legends regarding the size and col
of the symbols. Especially useful when shapes consist of grobs that have to be
represented by neutrally colored shapes. See also shapes.legend.fill.

shapes.legend.fill

Fill color of legend shapes. These colors will be used in the legends regarding
the size and shape of the symbols. See also shapes.legend.

shapes.labels Legend labels for the symbol shapes
shapes.drop.levels

should unused symbol classes be omitted? FALSE by default.

shapeNA the shape (a number or grob) for missing values. By default a cross (number 4).
Set to NA to hide symbols for missing values.

shape.textNA text used for missing values of the shape variable.

shape.showNA logical that determines whether missing values are named in the legend. By
default (NA), this depends on the presence of missing values.

shapes.n preferred number of shape classes. Only applicable when shape is a numeric
variable name.

98 tm_symbols

shapes.style method to process the shape scale when shape is a numeric variable. See style
argument for options.

shapes.style.args

arguments passed on to classIntervals (see also shapes.tyle).
shapes.as.count

when shape is a numeric variable, should it be processed as a count variable?
See as.count argument for options.

shapes.breaks in case shapes.style=="fixed", breaks should be specified
shapes.interval.closure

value that determines whether where the intervals are closed: "left" or "right".
Only applicable if shape is a numeric variable.

legend.max.symbol.size

Maximum size of the symbols that are drawn in the legend. For circles and
bubbles, a value larger than one is recommended (and used for tm_bubbles)

just justification of the symbols relative to the point coordinates. The first value
specifies horizontal and the second value vertical justification. Possible values
are: "left" , "right", "center", "bottom", and "top". Numeric values of 0
specify left alignment and 1 right alignment. The default value is c("center",
"center"). For icons, this value may already be speficied (see tmap_icons).
The just, if specified, will overrides this.

jitter number that determines the amount of jittering, i.e. the random noise added to
the position of the symbols. 0 means no jittering is applied, any positive number
means that the random noise has a standard deviation of jitter times the height
of one line of text line.

xmod horizontal position modification of the symbols, in terms of the height of one
line of text. Either a single number for all polygons, or a numeric variable in
the shape data specifying a number for each polygon. Together with ymod, it
determines position modification of the symbols. See also jitter for random
position modifications. In most coordinate systems (projections), the origin is
located at the bottom left, so negative xmod move the symbols to the left, and
negative ymod values to the bottom.

ymod vertical position modification. See xmod.

icon.scale scaling number that determines how large the icons (or grobs) are in plot mode
in comparison to proportional symbols (such as bubbles). In view mode, the
size is determined by the icon specification (see tmap_icons) or, if grobs are
specified by grob.width and grob.heigth

grob.dim vector of four values that determine how grob objects (see details) are shown in
view mode. The first and second value are the width and height of the displayed
icon. The third and fourth value are the width and height of the rendered png
image that is used for the icon. Generally, the third and fourth value should be
large enough to render a ggplot2 graphic successfully. Only needed for the view
mode.

title.size title of the legend element regarding the symbol sizes

title.col title of the legend element regarding the symbol colors

title.shape title of the legend element regarding the symbol shapes

tm_symbols 99

legend.size.show

logical that determines whether the legend for the symbol sizes is shown
legend.col.show

logical that determines whether the legend for the symbol colors is shown
legend.shape.show

logical that determines whether the legend for the symbol shapes is shown

legend.format list of formatting options for the legend numbers. Only applicable if labels is
undefined. Parameters are:

fun Function to specify the labels. It should take a numeric vector, and should
return a character vector of the same size. By default it is not specified. If
specified, the list items scientific, format, and digits (see below) are
not used.

scientific Should the labels be formatted scientifically? If so, square brackets
are used, and the format of the numbers is "g". Otherwise, format="f",
and text.separator, text.less.than, and text.or.more are used. Also,
the numbers are automatically rounded to millions or billions if applicable.

format By default, "f", i.e. the standard notation xxx.xxx, is used. If scientific=TRUE
then "g", which means that numbers are formatted scientifically, i.e. n.dddE+nn
if needed to save space.

digits Number of digits after the decimal point if format="f", and the number
of significant digits otherwise.

big.num.abbr Vector that defines whether and which abbrevations are used for
large numbers. It is a named numeric vector, where the name indicated the
abbreviation, and the number the magnitude (in terms on numbers of zero).
Numbers are only abbreviation when they are large enough. Set it to NA to
disable abbrevations. The default is c("mln" = 6, "bln" = 9). For layers
where style is set to log10 or log10_pretty, the default is NA.

prefix Prefix of each number
suffix Suffix of each number
text.separator Character string to use to separate numbers in the legend (de-

fault: "to").
text.less.than Character value(s) to use to translate "Less than". When a char-

acter vector of length 2 is specified, one for each word, these words are
aligned when text.to.columns = TRUE

text.or.more Character value(s) to use to translate "or more". When a character
vector of length 2 is specified, one for each word, these words are aligned
when text.to.columns = TRUE

text.align Value that determines how the numbers are aligned, "left", "center"
or "right". By default "left" for legends in portrait format (legend.is.protrait
= TRUE), and "center" otherwise.

text.to.columns Logical that determines whether the text is aligned to three
columns (from, text.separator, to). By default FALSE.

html.escape Logical that determins whther HTML code is escaped in the pop-
ups in view mode. By default TRUE. If set to FALSE HTML code can be
added, e.g. to added white space via .

... Other arguments passed on to formatC

100 tm_symbols

legend.size.is.portrait

logical that determines whether the legend element regarding the symbol sizes
is in portrait mode (TRUE) or landscape (FALSE)

legend.col.is.portrait

logical that determines whether the legend element regarding the symbol colors
is in portrait mode (TRUE) or landscape (FALSE)

legend.shape.is.portrait

logical that determines whether the legend element regarding the symbol shapes
is in portrait mode (TRUE) or landscape (FALSE)

legend.size.reverse

logical that determines whether the items of the legend regarding the symbol
sizes are shown in reverse order, i.e. from bottom to top when legend.size.is.portrait
= TRUE and from right to left when legend.size.is.portrait = FALSE

legend.col.reverse

logical that determines whether the items of the legend regarding the symbol col-
ors are shown in reverse order, i.e. from bottom to top when legend.col.is.portrait
= TRUE and from right to left when legend.col.is.portrait = FALSE

legend.shape.reverse

logical that determines whether the items of the legend regarding the symbol
shapes are shown in reverse order, i.e. from bottom to top when legend.shape.is.portrait
= TRUE and from right to left when legend.shape.is.portrait = FALSE

legend.hist logical that determines whether a histogram is shown regarding the symbol col-
ors

legend.hist.title

title for the histogram. By default, one title is used for both the histogram and
the normal legend for symbol colors.

legend.size.z index value that determines the position of the legend element regarding the
symbol sizes with respect to other legend elements. The legend elements are
stacked according to their z values. The legend element with the lowest z value
is placed on top.

legend.col.z index value that determines the position of the legend element regarding the
symbol colors. (See legend.size.z)

legend.shape.z index value that determines the position of the legend element regarding the
symbol shapes. (See legend.size.z)

legend.hist.z index value that determines the position of the histogram legend element. (See
legend.size.z)

id name of the data variable that specifies the indices of the symbols. Only used
for "view" mode (see tmap_mode).

interactive logical that determines whether this layer is interactive in view mode (e.g. hover
text, popup, and click event in shiny apps)

popup.vars names of data variables that are shown in the popups in "view" mode. If NA
(default), only aesthetic variables (i.e. specified by col and lwd) are shown).
If they are not specified, all variables are shown. Set popup.vars to FALSE to
disable popups. When a vector of variable names is provided, the names (if
specified) are printed in the popups.

tm_symbols 101

popup.format list of formatting options for the popup values. See the argument legend.format
for options. Only applicable for numeric data variables. If one list of formatting
options is provided, it is applied to all numeric variables of popup.vars. Also, a
(named) list of lists can be provided. In that case, each list of formatting options
is applied to the named variable.

zindex zindex of the pane in view mode. By default, it is set to the layer number plus
400. By default, the tmap layers will therefore be placed in the custom panes
"tmap401", "tmap402", etc., except for the base tile layers, which are placed in
the standard "tile". This parameter determines both the name of the pane and
the z-index, which determines the pane order from bottom to top. For instance,
if zindex is set to 500, the pane will be named "tmap500".

group name of the group to which this layer belongs in view mode. Each group can
be selected or deselected in the layer control item. Set group = NULL to hide the
layer in the layer control item. By default, it will be set to the name of the shape
(specified in tm_shape).

auto.palette.mapping

deprecated. It has been replaced by midpoint for numeric variables and stretch.palette
for categorical variables.

max.categories deprecated. It has moved to tmap_options.
... arguments passed on to tm_symbols. For tm_markers, arguments can also be

passed on to tm_text. In that case, they have to be prefixed with text., e.g. the
col argument should be names text.col.

title shortcut for title.col for tm_dots
legend.show shortcut for legend.col.show for tm_dots
legend.is.portrait

shortcut for legend.col.is.portrait for tm_dots
legend.z shortcut for legend.col.z shortcut for tm_dots
text text of the markers. Shown in plot mode, and as popup text in view mode.
text.just justification of marker text (see just argument of tm_text). Only applicable in

plot mode.
markers.on.top.of.text

For tm_markers, should the markers be drawn on top of the text labels?

Details

Small multiples can be drawn in two ways: either by specifying the by argument in tm_facets,
or by defining multiple variables in the aesthetic arguments, which are size, col, and shape. In
the latter case, the arguments, except for the ones starting with legend., can be specified for small
multiples as follows. If the argument normally only takes a single value, such as n, then a vector
of those values can be specified, one for each small multiple. If the argument normally can take a
vector, such as palette, then a list of those vectors (or values) can be specified, one for each small
multiple.

A shape specification is one of the following three options.

1. A numeric value that specifies the plotting character of the symbol. See parameter pch of
points and the last example to create a plot with all options. Note that this is not supported
for the "view" mode.

102 tm_symbols

2. A grob object, which can be a ggplot2 plot object created with ggplotGrob. To specify
multiple shapes, a list of grob objects is required. See example of a proportional symbol map
with ggplot2 plots.

3. An icon specification, which can be created with tmap_icons.

To specify multiple shapes (needed for the shapes argument), a vector or list of these shape speci-
fication is required. The shape specification options can also be mixed. For the shapes argument,
it is possible to use a named vector or list, where the names correspond to the value of the variable
specified by the shape argument. For small multiples, a list of these shape specification(s) should
be provided.

Value

tmap-element

References

Flannery J (1971). The Relative Effectiveness of Some Common Graduated Point Symbols in the
Presentation of Quantitative Data. Canadian Cartographer, 8(2), 96-109.

Tennekes, M., 2018, tmap: Thematic Maps in R, Journal of Statistical Software, 84(6), 1-39,
doi: 10.18637/jss.v084.i06

See Also

vignette("tmap-getstarted")

Examples

data(World, metro)
metro$growth <- (metro$pop2020 - metro$pop2010) / (metro$pop2010 * 10) * 100

tm_shape(World) +
tm_fill("grey70") +

tm_shape(metro) +
tm_bubbles("pop2010", col = "growth",

border.col = "black", border.alpha = .5,
style="fixed", breaks=c(-Inf, seq(0, 6, by=2), Inf),
palette="-RdYlBu", contrast=1,
title.size="Metro population",
title.col="Growth rate (%)") +

tm_format("World")

tm_shape(metro) +
tm_symbols(size = "pop2010", col="pop2010", shape="pop2010",
legend.format = list(text.align="right", text.to.columns = TRUE)) +
tm_legend(outside = TRUE, outside.position = "bottom", stack = "horizontal")

if (require(ggplot2) && require(dplyr) && require(tidyr) && require(tmaptools) && require(sf)) {
data(NLD_prov)

https://doi.org/10.18637/jss.v084.i06
../doc/tmap-getstarted.html

tm_symbols 103

origin_data <- NLD_prov %>%
st_set_geometry(NULL) %>%
mutate(FID= factor(1:n())) %>%
select(FID, origin_native, origin_west, origin_non_west) %>%
gather(key=origin, value=perc, origin_native, origin_west, origin_non_west, factor_key=TRUE)

origin_cols <- get_brewer_pal("Dark2", 3)

grobs <- lapply(split(origin_data, origin_data$FID), function(x) {
ggplotGrob(ggplot(x, aes(x="", y=-perc, fill=origin)) +
geom_bar(width=1, stat="identity") +
scale_y_continuous(expand=c(0,0)) +
scale_fill_manual(values=origin_cols) +
theme_ps(plot.axes = FALSE))
})

names(grobs) <- NLD_prov$name

tm_shape(NLD_prov) +
tm_polygons(group = "Provinces") +
tm_symbols(size="population", shape="name",
shapes=grobs,
sizes.legend=c(.5, 1,3)*1e6,
scale=1,
legend.shape.show = FALSE,
legend.size.is.portrait = TRUE,
shapes.legend = 22,
title.size = "Population",
group = "Charts",
id = "name",
popup.vars = c("population", "origin_native",

"origin_west", "origin_non_west")) +
tm_add_legend(type="fill",
group = "Charts",
col=origin_cols,
labels=c("Native", "Western", "Non-western"),
title="Origin") +
tm_format("NLD")
}

TIP: check out these examples in view mode, enabled with tmap_mode("view")

Not run:
if (require(rnaturalearth)) {

airports <- ne_download(scale=10, type="airports", returnclass = "sf")
airplane <- tmap_icons(system.file("img/airplane.png", package = "tmap"))

current.mode <- tmap_mode("view")
tm_shape(airports) +
tm_symbols(shape=airplane, size="natlscale",

104 tm_text

legend.size.show = FALSE, scale=1, border.col = NULL, id="name", popup.vars = TRUE) +
tm_view(set.view = c(lon = 15, lat = 48, zoom = 4))
tmap_mode(current.mode)
}

End(Not run)

###

Not run:
plot all available symbol shapes:
if (require(ggplot2)) {
ggplot(data.frame(p=c(0:25,32:127))) +
geom_point(aes(x=p%%16, y=-(p%/%16), shape=p), size=5, fill="red") +
geom_text(mapping=aes(x=p%%16, y=-(p%/%16+0.25), label=p), size=3) +
scale_shape_identity() +
theme(axis.title=element_blank(),

axis.text=element_blank(),
axis.ticks=element_blank(),
panel.background=element_blank())

}

End(Not run)

tm_text Add text labels

Description

Creates a tmap-element that adds text labels.

Usage

tm_text(
text,
size = 1,
col = NA,
root = 3,
clustering = FALSE,
size.lim = NA,
sizes.legend = NULL,
sizes.legend.labels = NULL,
sizes.legend.text = "Abc",
n = 5,
style = ifelse(is.null(breaks), "pretty", "fixed"),
style.args = list(),
as.count = NA,
breaks = NULL,
interval.closure = "left",

tm_text 105

palette = NULL,
labels = NULL,
drop.levels = FALSE,
labels.text = NA,
midpoint = NULL,
stretch.palette = TRUE,
contrast = NA,
colorNA = NA,
textNA = "Missing",
showNA = NA,
colorNULL = NA,
fontface = NA,
fontfamily = NA,
alpha = NA,
case = NA,
shadow = FALSE,
bg.color = NA,
bg.alpha = NA,
size.lowerbound = 0.4,
print.tiny = FALSE,
scale = 1,
auto.placement = FALSE,
remove.overlap = FALSE,
along.lines = FALSE,
overwrite.lines = FALSE,
just = "center",
xmod = 0,
ymod = 0,
title.size = NA,
title.col = NA,
legend.size.show = TRUE,
legend.col.show = TRUE,
legend.format = list(),
legend.size.is.portrait = FALSE,
legend.col.is.portrait = TRUE,
legend.size.reverse = FALSE,
legend.col.reverse = FALSE,
legend.hist = FALSE,
legend.hist.title = NA,
legend.size.z = NA,
legend.col.z = NA,
legend.hist.z = NA,
id = NA,
zindex = NA,
group = NA,
auto.palette.mapping = NULL,
max.categories = NULL

)

106 tm_text

Arguments

text name of the variable in the shape object that contains the text labels

size relative size of the text labels (see note). Either one number, a name of a numeric
variable in the shape data that is used to scale the sizes proportionally, or the
value "AREA", where the text size is proportional to the area size of the polygons.

col color of the text labels. Either a color value or a data variable name. If multiple
values are specified, small multiples are drawn (see details).

root root number to which the font sizes are scaled. Only applicable if size is a
variable name or "AREA". If root=2, the square root is taken, if root=3, the
cube root etc.

clustering value that determines whether the text labels are clustered in "view" mode. One
of: TRUE, FALSE, or the output of markerClusterOptions.

size.lim vector of two limit values of the size variable. Only text labels are drawn whose
value is greater than or equal to the first value. Text labels whose values exceed
the second value are drawn at the size of the second value. Only applicable when
size is the name of a numeric variable of shp. See also size.lowerbound
which is a threshold of the relative font size.

sizes.legend vector of text sizes that are shown in the legend. By default, this is determined
automatically.

sizes.legend.labels

vector of labels for that correspond to sizes.legend.
sizes.legend.text

vector of example text to show in the legend next to sizes.legend.labels. By
default "Abc". When NA, examples from the data variable whose sizes are close
to the sizes.legend are taken and "NA" for classes where no match is found.

n preferred number of color scale classes. Only applicable when col is a numeric
variable name.

style method to process the color scale when col is a numeric variable. Discrete
gradient options are "cat", "fixed", "sd", "equal", "pretty", "quantile",
"kmeans", "hclust", "bclust", "fisher", "jenks", "dpih", "headtails",
and "log10_pretty". A numeric variable is processed as a categorical variable
when using "cat", i.e. each unique value will correspond to a distinct category.
For the other discrete gradient options (except "log10_pretty"), see the de-
tails in classIntervals (extra arguments can be passed on via style.args).
Continuous gradient options are "cont", "order", and "log10". The first maps
the values of col to a smooth gradient, the second maps the order of values
of col to a smooth gradient, and the third uses a logarithmic transformation.
The numeric variable can be either regarded as a continuous variable or a count
(integer) variable. See as.count.

style.args arguments passed on to classIntervals, the function that determine color
classes (see also style).

as.count when col is a numeric variable, should it be processed as a count variable? For
instance, if style = "pretty", n = 2, and the value range of the variable is 0 to
10, then the column classes for as.count = TRUE are 0; 1 to 5; 6 to 10 (note that

tm_text 107

0 is regarded as an own category) whereas for as.count = FALSE they are 0 to 5;
5 to 10. Only applicable if style is "pretty", "fixed", or "log10_pretty".
By default, TRUE if style is one of these, and the variable is an integer.

breaks in case style=="fixed", breaks should be specified. The breaks argument can
also be used when style="cont". In that case, the breaks are mapped evenly to
the sequential or diverging color palette.

interval.closure

value that determines whether where the intervals are closed: "left" or "right".
Only applicable if col is a numeric variable. If as.count = TRUE, inverval.closure
is always set to "left".

palette a palette name or a vector of colors. See tmaptools::palette_explorer() for
the named palettes. Use a "-" as prefix to reverse the palette. The default palette
is taken from tm_layout’s argument aes.palette, which typically depends on
the style. The type of palette from aes.palette is automatically determined,
but can be overwritten: use "seq" for sequential, "div" for diverging, and "cat"
for categorical.

labels labels of the color classes, applicable if col is a data variable name

drop.levels should unused color classes be omitted? FALSE by default.

labels.text Example text to show in the legend next to the labels. When NA (default),
examples from the data variable are taken and "NA" for classes where they don’t
exist.

midpoint The value mapped to the middle color of a diverging palette. By default it is set
to 0 if negative and positive values are present. In that case, the two sides of the
color palette are assigned to negative respectively positive values. If all values
are positive or all values are negative, then the midpoint is set to NA, which
means that the value that corresponds to the middle color class (see style) is
mapped to the middle color. Only applies when col is a numeric variable. If it
is specified for sequential color palettes (e.g. "Blues"), then this color palette
will be treated as a diverging color palette.

stretch.palette

Logical that determines whether the categorical color palette should be stretched
if there are more categories than colors. If TRUE (default), interpolated colors are
used (like a rainbow). If FALSE, the palette is repeated.

contrast vector of two numbers that determine the range that is used for sequential and
diverging palettes (applicable when auto.palette.mapping=TRUE). Both num-
bers should be between 0 and 1. The first number determines where the palette
begins, and the second number where it ends. For sequential palettes, 0 means
the brightest color, and 1 the darkest color. For diverging palettes, 0 means the
middle color, and 1 both extremes. If only one number is provided, this number
is interpreted as the endpoint (with 0 taken as the start).

colorNA colour for missing values. Use NULL for transparency.

textNA text used for missing values.

showNA logical that determines whether missing values are named in the legend. By
default (NA), this depends on the presence of missing values.

colorNULL colour for polygons that are shown on the map that are out of scope

108 tm_text

fontface font face of the text labels. By default, determined by the fontface argument of
tm_layout.

fontfamily font family of the text labels. By default, determined by the fontfamily argument
of tm_layout.

alpha transparency number between 0 (totally transparent) and 1 (not transparent). By
default, the alpha value of the fontcolor is used (normally 1).

case case of the font. Use "upper" to generate upper-case text, "lower" to generate
lower-case text, and NA to leave the text as is.

shadow logical that determines whether a shadow is depicted behind the text. The color
of the shadow is either white or yellow, depending of the fontcolor.

bg.color background color of the text labels. By default, bg.color=NA, so no background
is drawn.

bg.alpha number between 0 and 1 that specifies the transparency of the text background
(0 is totally transparent, 1 is solid background).

size.lowerbound

lowerbound for size. Only applicable when size is not a constant. If print.tiny
is TRUE, then all text labels which relative text is smaller than size.lowerbound
are depicted at relative size size.lowerbound. If print.tiny is FALSE, then
text labels are only depicted if their relative sizes are at least size.lowerbound
(in other words, tiny labels are omitted).

print.tiny boolean, see size.lowerbound

scale text size multiplier, useful in case size is variable or "AREA".

auto.placement logical (or numeric) that determines whether the labels are placed automatically.
If TRUE, the labels are placed next to the coordinate points with as little overlap as
possible using the simulated annealing algorithm. Therefore, it is recommended
for labeling spatial dots or symbols. If a numeric value is provided, this value
acts as a parameter that specifies the distance between the coordinate points and
the text labels in terms of text line heights.

remove.overlap logical that determines whether the overlapping labels are removed

along.lines logical that determines whether labels are rotated along the spatial lines. Only
applicable if a spatial lines shape is used.

overwrite.lines

logical that determines whether the part of the lines below the text labels is
removed. Only applicable if a spatial lines shape is used.

just justification of the text relative to the point coordinates. Either one of the fol-
lowing values: "left" , "right", "center", "bottom", and "top", or a vector
of two values where first value specifies horizontal and the second value vertical
justification. Besides the mentioned values, also numeric values between 0 and 1
can be used. 0 means left justification for the first value and bottom justification
for the second value. Note that in view mode, only one value is used.

xmod horizontal position modification of the text (relatively): 0 means no modifica-
tion, and 1 corresponds to the height of one line of text. Either a single number
for all polygons, or a numeric variable in the shape data specifying a number for
each polygon. Together with ymod, it determines position modification of the

tm_text 109

text labels. In most coordinate systems (projections), the origin is located at the
bottom left, so negative xmod move the text to the left, and negative ymod values
to the bottom.

ymod vertical position modification. See xmod.
title.size title of the legend element regarding the text sizes
title.col title of the legend element regarding the text colors
legend.size.show

logical that determines whether the legend for the text sizes is shown
legend.col.show

logical that determines whether the legend for the text colors is shown
legend.format list of formatting options for the legend numbers. Only applicable if labels is

undefined. Parameters are:
fun Function to specify the labels. It should take a numeric vector, and should

return a character vector of the same size. By default it is not specified. If
specified, the list items scientific, format, and digits (see below) are
not used.

scientific Should the labels be formatted scientifically? If so, square brackets
are used, and the format of the numbers is "g". Otherwise, format="f",
and text.separator, text.less.than, and text.or.more are used. Also,
the numbers are automatically rounded to millions or billions if applicable.

format By default, "f", i.e. the standard notation xxx.xxx, is used. If scientific=TRUE
then "g", which means that numbers are formatted scientifically, i.e. n.dddE+nn
if needed to save space.

digits Number of digits after the decimal point if format="f", and the number
of significant digits otherwise.

big.num.abbr Vector that defines whether and which abbrevations are used for
large numbers. It is a named numeric vector, where the name indicated the
abbreviation, and the number the magnitude (in terms on numbers of zero).
Numbers are only abbrevation when they are large enough. Set it to NA to
disable abbrevations. The default is c("mln" = 6, "bln" = 9). For layers
where style is set to log10 or log10_pretty, the default is NA.

prefix Prefix of each number
suffix Suffix of each number
prefix Prefix of each number
suffix Suffix of each number
text.separator Character string to use to separate numbers in the legend (de-

fault: "to").
text.less.than Character value(s) to use to translate "Less than". When a char-

acter vector of length 2 is specified, one for each word, these words are
aligned when text.to.columns = TRUE

text.or.more Character value(s) to use to translate "or more". When a character
vector of length 2 is specified, one for each word, these words are aligned
when text.to.columns = TRUE

text.align Value that determines how the numbers are aligned, "left", "center"
or "right". By default "left" for legends in portrait format (legend.is.portrait
= TRUE), and "center" otherwise.

110 tm_text

text.to.columns Logical that determines whether the text is aligned to three
columns (from, text.separator, to). By default FALSE.

html.escape Logical that determins whther HTML code is escaped in the pop-
ups in view mode. By default TRUE. If set to FALSE HTML code can be
added, e.g. to added white space via .

... Other arguments passed on to formatC

legend.size.is.portrait

logical that determines whether the legend element regarding the text sizes is in
portrait mode (TRUE) or landscape (FALSE)

legend.col.is.portrait

logical that determines whether the legend element regarding the text colors is
in portrait mode (TRUE) or landscape (FALSE)

legend.size.reverse

logical that determines whether the items of the legend regarding the text sizes
are shown in reverse order, i.e. from bottom to top when legend.size.is.portrait
= TRUE and from right to left when legend.size.is.portrait = FALSE

legend.col.reverse

logical that determines whether the items of the legend regarding the text colors
are shown in reverse order, i.e. from bottom to top when legend.col.is.portrait
= TRUE and from right to left when legend.col.is.portrait = FALSE

legend.hist logical that determines whether a histogram is shown regarding the text colors
legend.hist.title

title for the histogram. By default, one title is used for both the histogram and
the normal legend for text colors.

legend.size.z index value that determines the position of the legend element regarding the text
sizes with respect to other legend elements. The legend elements are stacked
according to their z values. The legend element with the lowest z value is placed
on top.

legend.col.z index value that determines the position of the legend element regarding the text
colors. (See legend.size.z)

legend.hist.z index value that determines the position of the histogram legend element. (See
legend.size.z)

id name of the data variable that specifies the indices of the text labels. Only used
for "view" mode (see tmap_mode).

zindex zindex of the pane in view mode. By default, it is set to the layer number plus
400. By default, the tmap layers will therefore be placed in the custom panes
"tmap401", "tmap402", etc., except for the base tile layers, which are placed in
the standard "tile". This parameter determines both the name of the pane and
the z-index, which determines the pane order from bottom to top. For instance,
if zindex is set to 500, the pane will be named "tmap500".

group name of the group to which this layer belongs in view mode. Each group can
be selected or deselected in the layer control item. Set group = NULL to hide the
layer in the layer control item. By default, it will be set to the name of the shape
(specified in tm_shape).

tm_text 111

auto.palette.mapping

deprecated. It has been replaced by midpoint for numeric variables and stretch.palette
for categorical variables.

max.categories deprecated. It has moved to tmap_options.

Value

tmap-element

Note

The absolute fontsize (in points) is determined by the (ROOT) viewport, which may depend on the
graphics device.

References

Tennekes, M., 2018, tmap: Thematic Maps in R, Journal of Statistical Software, 84(6), 1-39,
doi: 10.18637/jss.v084.i06

See Also

vignette("tmap-getstarted")

Examples

current.mode <- tmap_mode("plot")

data(World, metro)

tm_shape(World) +
tm_text("name", size="AREA")

tm_shape(World) +
tm_text("name", size="pop_est", col="continent", palette="Dark2",
title.size = "Population", title.col="Continent") +
tm_legend(outside = TRUE)

tmap_mode("view")

Not run:
require(tmaptools)
metro_aus <- crop_shape(metro, bb("Australia"))

tm_shape(metro_aus) +
tm_dots() +
tm_text("name", just = "top")

alternative
tm_shape(metro_aus) +
tm_markers(text = "name")

End(Not run)

https://doi.org/10.18637/jss.v084.i06
../doc/tmap-getstarted.html

112 tm_view

restore current mode
tmap_mode(current.mode)

tm_view Options for the interactive tmap viewer

Description

Set the options for the interactive tmap viewer. Some of these options can also be set with tm_layout,
since they are style dependent (e.g., the choice of basemaps). The function tm_view overrides these
options when specified.

Usage

tm_view(
alpha,
colorNA,
projection,
symbol.size.fixed,
dot.size.fixed,
text.size.variable,
bbox,
set.bounds,
set.view,
set.zoom.limits,
view.legend.position,
control.position,
legend.position,
leaflet.options

)

Arguments

alpha transparency (opacity) parameter applied to whole map. By default, it is set to
0.7 if basemaps are used, and 1 otherwise.

colorNA default color for missing values in interactive mode. If the color of missing
values is not defined in the layer functions (e.g. tm_fill), then the default color
is taken from the na value of the aes.color argument in tm_layout. This
colorNA argument (if not NA itself) overrides that default value. For interactive
maps, it can be useful to set colorNA to NULL, which means transparent.

projection projection. Either a EPSG number, or a leaflet_crs object created with leafletCRS.
By default, the Web Mercator (3857) is used, since the vast majority of basemaps
are rendered accordingly. Other standards are EPSG numbers 4326 (WGS84)
and 3395 (Mercator). If set to 0, the projection of the master shape is used (see
tm_shape) provided that a EPSG number can be extracted.

tm_view 113

symbol.size.fixed

should symbol sizes be fixed while zooming?

dot.size.fixed should dot sizes be fixed while zooming?
text.size.variable

should text size variables be allowed in view mode? By default FALSE, since in
many applications, the main reason to vary text size is to prevent occlusion in
plot mode, which is often not a problem in view mode due to the ability to zoom
in.

bbox bounding box. One of the following:

• A bounding box (an sf bbox object, see st_bbox, or object that can be read
by bb.

• Open Street Map search query. The bounding is automatically generated
by querying q from Open Street Map Nominatim. See https://wiki.
openstreetmap.org/wiki/Nominatim.

If set, it overrides set.view and all bbox arguments of tm_shape.

set.bounds logical that determines whether maximum bounds are set, or a numeric vec-
tor of four values that specify the lng1, lat1, lng2, and lat2 coordinates (see
setMaxBounds).

set.view numeric vector that determines the view. Either a vector of three: lng, lat, and
zoom, or a single value: zoom. See setView. Only applicable if bbox is not
specified

set.zoom.limits

numeric vector of two that set the minimum and maximum zoom levels (see
tileOptions).

view.legend.position

Character vector of two values, specifying the position of the legend. Use "left"
or "right" for the first value and "top" or "bottom" for the second value. It over-
rides the value of legend.position of tm_layout, unless set to NA.

control.position

Character vector of two values, specifying the position of the layer control UI.
Use "left" or "right" for the first value and "top" or "bottom" for the second
value.

legend.position

not used anymore, renamed to view.legend.position
leaflet.options

other options passed on via leafletOptions to leaflet.js map creation (see
leaflet, follow Docs, Map, Creation). Named list, where the names correspond to
the variable names. Tip: use zoomSnap and zoomDelta for fractional zooming.

References

Tennekes, M., 2018, tmap: Thematic Maps in R, Journal of Statistical Software, 84(6), 1-39,
doi: 10.18637/jss.v084.i06

See Also

vignette("tmap-getstarted")

https://wiki.openstreetmap.org/wiki/Nominatim
https://wiki.openstreetmap.org/wiki/Nominatim
https://leafletjs.com/
https://doi.org/10.18637/jss.v084.i06
../doc/tmap-getstarted.html

114 tm_xlab

Examples

world choropleth/bubble map of the world
data(World, metro)
metro$growth <- (metro$pop2020 - metro$pop2010) / (metro$pop2010 * 10) * 100

map1 <- tm_shape(metro) +
tm_bubbles("pop2010", col = "growth",
border.col = "black", border.alpha = .5,
style="fixed", breaks=c(-Inf, seq(0, 6, by=2), Inf),
palette="-RdYlBu", contrast=1,
title.size="Metro population",
title.col="Growth rate (%)", id="name",

popup.vars=c("pop2010", "pop2020", "growth")) +
tm_legend(outside=TRUE)

current.mode <- tmap_mode("plot")

plot map
map1

view map with default view options
tmap_mode("view")
map1

view map with changed view options
map1 + tm_view(set.view = c(7, 51, 4)) # longitude 7, latitude 51, zoom 4

interactive world map in original CRS
tm_shape(World) +tm_polygons("HPI") + tm_view(projection = 0) + tm_basemap(NULL)

restore current mode
tmap_mode(current.mode)

tm_xlab Axis labels

Description

Add axis labels

Usage

tm_xlab(text, size = 0.8, rotation = 0, space = 0)

tm_ylab(text, size = 0.8, rotation = 90, space = 0)

Arguments

text text for the axis

World 115

size fontsize, by default 0.8
rotation rotation angle in degrees. By default, 0 for the x axis label and 90 for the y axis

label.
space space between labels and the map in numbers of line heights. By default, it is

0, unless grid labels are plotted outside the frame (i.e., tm_grid is called with
labels.inside.frame = FALSE). In that case, space corresponds to the height
of one line, taking the grid label size into account.

Examples

data(World)

qtm(World, fill="#FFF8DC", projection=4326, inner.margins=0) +
tm_grid(x = seq(-180, 180, by=20), y=seq(-90,90,by=10), col = "gray70") +
tm_xlab("Longitude") +
tm_ylab("Latitude")

World World and Netherlands map

Description

Maps of the world and the Netherlands (province and municipality level), class sf

Usage

data(World)

data(NLD_prov)

data(NLD_muni)

Details

The default projections for these maps are Eckhart IV (World) and Rijksdriehoekstelsel (Nether-
lands). See below. The projection can be changed temporarily for plotting purposes by using the
projection argument of tm_shape (or qtm).

World World map. The default projection for this world map is Eckhart IV since area sizes are
preserved, which is a very important property for choropleths.

NLD_prov and NLD_muni, maps of the Netherlands at province and municipality level of 2013. The
used projection is the Rijksdriehoekstelsel projection. Important: publication of these maps is
only allowed when cited to Statistics Netherlands (CBS) and Kadaster Nederland as source.

Source

https://www.naturalearthdata.com/ for World

https://happyplanetindex.org/ for World

https://www.cbs.nl/ for NLD_prov and NLD_muni.

https://www.naturalearthdata.com/
https://happyplanetindex.org/
https://www.cbs.nl/

116 World

References

Statistics Netherlands (2014), The Hague/Heerlen, Netherlands, https://www.cbs.nl/.

Kadaster, the Netherlands’ Cadastre, Land Registry, and Mapping Agency (2014), Apeldoorn,
Netherlands, https://www.kadaster.nl/.

https://www.cbs.nl/
https://www.kadaster.nl/

Index

∗ GIS
tmap-package, 3

∗ animation
tmap_animation, 17

∗ bubble map
tmap-package, 3

∗ choropleth
tm_fill, 50
tmap-package, 3

∗ simple features
tm_sf, 87

∗ statistical maps
tmap-package, 3

∗ symbol map
tm_symbols, 92

∗ thematic maps
tmap-package, 3

+.tmap, 6

addMiniMap, 79
addMouseCoordinates, 79
av_encode_video, 18

bb, 64, 90, 91, 113

cairo_pdf, 34
classIntervals, 52, 73, 76, 82, 96, 98, 106
crs, 11, 90

deprecated_functions, 6

formatC, 54, 58, 67, 75, 84, 99, 110

ggplotGrob, 102
grid.newpage(), 9
grob, 102

icons, 24

knit_print, 9, 20
knit_print.tmap (print.tmap), 8

knit_print.tmap_arrange (tmap_arrange),
19

land, 5, 7
last_plot, 24
leaflet, 9, 25, 27
leafletCRS, 112
leafletOptions, 113

map_coloring, 51, 55
marker_icon (tmap_icons), 23
markerClusterOptions, 95, 106
metro, 5, 8

NLD_muni, 5
NLD_muni (World), 115
NLD_prov, 5
NLD_prov (World), 115

options, 29

par, 55
png, 34
points, 101
pretty, 58
print, 5, 9, 20
print.tmap, 8, 25
print.tmap_arrange (tmap_arrange), 19

qtm, 3, 9, 9, 14, 25, 30, 115

read_osm, 40
renderTmap, 13
rivers, 5, 15

saveWidget, 35
saveWidgetframe, 35
setMaxBounds, 113
setView, 113
sf, 5, 8, 10, 15, 64, 89, 90, 113, 115
simplify_shape, 90, 91

117

118 INDEX

st_bbox, 64, 90, 113
st_is_valid, 31
st_make_valid, 31
stars, 5, 7, 10, 89

table, 47
theme_ps, 15
tileOptions, 113
tm_add_legend, 38
tm_basemap, 4, 11, 16, 30, 40
tm_borders, 4, 16
tm_borders (tm_fill), 50
tm_bubbles, 4, 16
tm_bubbles (tm_symbols), 92
tm_compass, 4, 16, 41, 64, 69
tm_credits, 4, 16, 43, 69
tm_dots, 4, 16, 87, 88
tm_dots (tm_symbols), 92
tm_facets, 4, 11, 14, 18, 19, 27, 45, 55, 67,

68, 76, 81, 85, 101
tm_fill, 4, 16, 45, 46, 50, 63, 66, 90, 112
tm_format, 4, 7, 17
tm_format (tm_layout), 61
tm_graticules (tm_grid), 56
tm_grid, 4, 16, 56, 115
tm_iso, 4, 16, 60
tm_layout, 4, 5, 11, 14, 17, 18, 20, 22, 27, 29,

31, 34, 36, 42–44, 51, 61, 73, 78, 81,
82, 87, 96, 107, 108, 112, 113

tm_legend, 4, 17
tm_legend (tm_layout), 61
tm_lines, 3, 16, 60, 71, 87, 88
tm_logo, 4, 16, 77
tm_markers, 4, 16
tm_markers (tm_symbols), 92
tm_minimap, 4, 17, 69, 78
tm_mouse_coordinates, 79
tm_polygons, 3, 12, 16, 30, 87, 88
tm_polygons (tm_fill), 50
tm_raster, 3, 16, 80
tm_remove_layer (renderTmap), 13
tm_rgb, 4, 16
tm_rgb (tm_raster), 80
tm_rgba (tm_raster), 80
tm_scale_bar, 4, 16, 69, 86, 90
tm_sf, 87
tm_shape, 3, 11, 12, 16, 27, 30, 40, 55, 60, 64,

76, 84, 86, 88, 89, 101, 110, 112,
113, 115

tm_squares, 4, 16
tm_squares (tm_symbols), 92
tm_style, 4, 7, 17, 36
tm_style (tm_layout), 61
tm_symbols, 3, 10, 11, 16, 24, 38, 39, 88, 92
tm_text, 3, 16, 60, 101, 104
tm_tiles, 4, 11, 16, 27, 79
tm_tiles (tm_basemap), 40
tm_view, 4, 5, 17, 22, 25, 27, 29, 31, 112
tm_xlab, 4, 17, 44, 114
tm_ylab, 4, 17
tm_ylab (tm_xlab), 114
tmap, 20
tmap (tmap-package), 3
tmap-element, 16
tmap-package, 3
tmap_animation, 5, 7, 17, 31, 46
tmap_arrange, 5, 19
tmap_design_mode, 21, 31
tmap_format, 11, 21
tmap_format_add (tmap_format), 21
tmap_grob, 22
tmap_icons, 5, 23, 98, 102
tmap_last, 5, 7, 24, 27
tmap_leaflet, 5, 9, 25, 27
tmap_mode, 5, 8, 9, 25, 26, 54, 76, 100, 110
tmap_options, 5, 12, 18, 21, 22, 26, 27, 28,

34–36, 41, 55, 69, 76, 84, 90, 101,
111

tmap_options_diff, 36
tmap_options_diff (tmap_options), 28
tmap_options_reset (tmap_options), 28
tmap_options_save (tmap_options), 28
tmap_save, 5, 7, 9, 18, 25, 27, 31, 33
tmap_style, 5, 11, 29, 31, 36, 37
tmap_style_catalog, 7
tmap_style_catalog

(tmap_style_catalogue), 37
tmap_style_catalogue, 7, 22, 36, 37
tmap_tip, 37
tmapOutput, 25
tmapOutput (renderTmap), 13
tmapProxy (renderTmap), 13
ttm, 5
ttm (tmap_mode), 26
ttmp (tmap_mode), 26

viewport, 9, 34

INDEX 119

World, 5, 115

	tmap-package
	+.tmap
	deprecated_functions
	land
	metro
	print.tmap
	qtm
	renderTmap
	rivers
	theme_ps
	tmap-element
	tmap_animation
	tmap_arrange
	tmap_design_mode
	tmap_format
	tmap_grob
	tmap_icons
	tmap_last
	tmap_leaflet
	tmap_mode
	tmap_options
	tmap_save
	tmap_style
	tmap_style_catalogue
	tmap_tip
	tm_add_legend
	tm_basemap
	tm_compass
	tm_credits
	tm_facets
	tm_fill
	tm_grid
	tm_iso
	tm_layout
	tm_lines
	tm_logo
	tm_minimap
	tm_mouse_coordinates
	tm_raster
	tm_scale_bar
	tm_sf
	tm_shape
	tm_symbols
	tm_text
	tm_view
	tm_xlab
	World
	Index

