
JSS Journal of Statistical Software
MMMMMM YYYY, Volume VV, Issue II. doi: 10.18637/jss.v000.i00

trajectories: Classes and Methods for Trajectory

Data

M. Mehdi Moradi

University of Jaume I
Edzer Pebesma

University of Münster
Jorge Mateu

University of Jaume I

Abstract

The package trajectories presents different classes and methods to handle and sum-
marise trajectory data in R. It also provides model fitting to moving objects using time
series modelling in the package forecast. Moreover, when dealing with a list of moving data
that overlap in time, trajectories develops some statistical methodologies which provide
users with some information about the behaviour of objects over time and with respect to
each other. Using some methodologies for spatial point patterns, available in the package
spatstat, we present an estimator for the intensity function of trajectory patterns which
highlights the more visited streets, dense paths, etc. Based on second-order summary
statistics for spatial point patterns, trajectories proposes a variability area which shows
the variation of the type of interaction between moving objects over time. We also discuss
the discrepancy between the estimated intensity and the expected intensity per area per
time. Our methods are applied to a taxi trajectory data from Beijing, China.

Keywords: Chi-map, Distance, Intensity, R, Second-order characteristics, Spatio-Temporal,
Taxi Movements, Trajectory.

1. Introduction

Modern data collection techniques allow tracking objects continuously. This means that we
do not only know the current location of a moving object, but we also track the objects over
time. A set of some tracks from different moving objects may be considered a trajectory
pattern. Another example is that in which we record the location of a group of moving
objects (e.g., cars, pedestrians, animals) within a regular/irregular time sequence. Güting
and Schneider (2005) focused on moving objects databases and extended database technology
to deal with moving objects. Challa, Morelande, Musicki, and Evans (2011) presented an
introduction to the field of object tracking and provided solid foundation to the collection
of diverse algorithms developed by academics, scientific researchers and engineers. Hanks,
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Hooten, Alldredge et al. (2015) proposed a continuous-time, discrete-space (CTDS) model
for animal movement. Niu, Blackwell, and Skarin (2016) considered a multivariate Ornstein
Uhlenbeck diffusion process to model the movement of animals in continuous time. Rus-
sell, Hanks, and Haran (2016) introduced an approach that models dependent movement by
augmenting a dynamic marginal movement model with a spatial point process interaction
function within a weighted distribution framework. Hooten and Johnson (2017) presented a
natural basis function approach to constructing appropriate covariance models for movement
processes. There are already some R packages available in CRAN Task View: Handling and
Analyzing Spatio-Temporal Data to handle moving objects. Most of them are focused on han-
dling and analysing animal movements such as adehabitatLT (Calenge 2006), tripEstimation

(Sumner, Wotherspoon, and Hindell 2009), argosfilter (Freitas 2012), V-Track (Campbell,
Watts, Dwyer, and Franklin 2012), animalTrack (Farrell and Fuiman 2013), BBMM (Niel-
son, Sawyer, and McDonald 2013), bcpa (Gurarie 2014), BayesianAnimalTracker (Liu 2014),
TrackReconstruction (Battaile 2014), mkde (Tracey, Sheppard, Zhu, Sinkovts, Chourasia,
Lockwood, and Fisher 2014), SimilarityMeasures (Toohey 2015), smam (Yan and Pozdnyakov
2016), trip(Sumner 2016), moveHMM (Michelot, Langrock, and Patterson 2016), FLightR

(Rakhimberdiev, Saveliev, Piersma, and Karagicheva 2017). In particular, the package ade-

habitatLT (Calenge 2006) provides tools to simulate trajectories using a Brownian motion,
correlated Random walks and Levy walks. Toohey (2015) presented four different similarity
measures in SimilarityMeasures. Michelot et al. (2016) in moveHMM provided animal move-
ment modelling using hidden Markov models. Using multiple regression, fishmove (Radinger
and Wolter 2014) provides functions to predict fish movement parameters. The R package
trackeR (Frick and Kosmidis 2017) provides infrastructure for running and cycling Data.

However, to the best of our knowledge, R is still missing a complete set of generic data
structures and methods to effectively analyse trajectories without being limited to a particular
domain. Figure 1 shows routes passed by 5 different taxis on the 4th of Feb 2008 in Beijing,
China. Each taxi has a different start/end time. To avoid having a complicated plot, we have
only displayed 5 tracks; the entire dataset will be analysed in Section 5.

The entire dataset is stored in the R package taxidata and can be installed through the
following code.

R> # install.packages("taxidata",

R> # repos = "http://pebesma.staff.ifgi.de",type = "source")

Figure 1 is generated using the following lines of code.

R> library("trajectories")

R> # library("taxidata")

R> # Beijing <- taxidata

R> # Beijing <- Beijing[1:2000]

R> # Z <- lapply(X=1:length(Beijing), function(i){

R> # q <- cut(Beijing[[i]], "day", touch = F)

R> # return(q@tracks[[3]])

R> # })

R> # plot(Z[[21]],xlim=c(420000,470000),ylim=c(4390000,4455000),lwd=2)

R> # plot(Z[[26]],add=T,col="orange",lwd=2)

R> # plot(Z[[20]],add=T,col=2,lwd=2)

https://cran.r-project.org
https://cran.r-project.org
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R> # plot(Z[[12]],add=T,col=3,lwd=2)

R> # plot(Z[[15]],add=T,col=4,lwd=2)
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Figure 1: Trajectory pattern containing tracks of five taxis on the 4th of Feb 2008 in Beijing,
China. Each color represents a different taxi track.

Studying the behaviour of moving objects over time and their interaction, either between
objects or with environment, plays a crucial role in understanding how they use space and
more importantly how they interact each other. Moving objects are moving within a particular
area over time, thus a snapshot of a trajectory pattern might be seen as a spatial point
pattern. This aspect then empowers us to study the behaviour of moving objects within
space and over time. A set of locations, usually non-uniformly distributed within a certain
region, can be considered as a realisation of a spatial point process. Analysis of spatial point
processes has been widely discussed in the literature (Møller and Waagepetersen 2003; Illian,
Penttinen, Stoyan, and Stoyan 2008; Diggle 2013; Baddeley, Rubak, and Turner 2015). The
R package spatstat (Baddeley and Turner 2005; Baddeley et al. 2015) provides different tools
for statistical analysis, model-fitting, simulation and tests on spatial point patterns. Diggle
(2013) has broadly considered the details of spatio-temporal point processes. Application of
such processes can be found in traffic management, geography, forestry, ecology, epidemiology,
seismology, astronomy and criminology.

This paper describes a collection of tools provided by the R package trajectories to handle,
simulate and statistically analyse movement data regardless of the domain, converting a
trajectory pattern into a list of point patterns based on regular timestamps. We here propose
different functions to analyse the behaviour of objects over time and how they use space
and also how they interact with each other. The type of interaction between objects may
vary over time. The effect of the environment on the type of interaction might also be of
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interest. Therefore, using the literature of spatial point processes, the R package trajectories

opens up a new way of thinking about trajectory datasets. We define different classes to
handle trajectories, and different functions for simulating and performing exploratory data
analysis. We also borrow first and second-order characteristics from the literature of spatial
point processes and, by adapting them to trajectory patterns, we aim at highlighting the most
frequently used routes within the studied area together with disclosing the type of interaction
between the objects over time. Moreover, the trajectories package fits time series models to
the spatial coordinates of a trajectory dataset.

The plan of the paper is the following. Section 2 presents some background and definitions.
Section 3 describes different classes of trajectories and explains different methods to summarise
trajectory data. Simulation and model fitting of trajectory data is described in Section 4.
Section 5 develops some statistical methods to perform exploratory data analysis and they
are demonstrated through the taxi trajectory data from Beijing, China. The paper ends with
some final conclusions in Section 6.

2. Setup and definition

Spatial point locations are usually analysed through spatial point processes, see Møller and
Waagepetersen (2003); Daley and Vere-Jones (2007); Baddeley et al. (2015). Such events
might also be labelled with the temporal instant, demanding then a spatio-temporal analysis
(Diggle 2013). Let X be a spatial point process in R

2 with intensity function λ(·) > 0
and second-moment intensity λ2(·, ·). For any Borel-measurable real function f(x) where∫
R2 ♣f(u)♣λ(u)du < ∞, it is satisfied

E

 ∑

x∈X

f(x)

]
=

∫

R2

f(u)λ(u)du, u ∈ R
2. (1)

Equation 1 has been broadly used in the literature of spatial point processes and it is called
Campbell’s formula. Generally speaking, λ(·) is the expected number of points per unit area.
Recall that if λ(·) is constant then X is homogeneous, otherwise X is called an inhomogeneous
point process. One of the first and an important step in studying point processes is to
investigate the intensity function. Estimating the intensity function of spatial point processes
has been largely discussed (Diggle 1985; Jones 1993; Chiu, Stoyan, Kendall, and Mecke 2013).
We denote a realisation of the point process X with n points as x = ¶x1, x2, . . . , xn♢; note
that n is not fixed in advance. In point process analysis, we only consider a single realisation
of the underlying point process, and then analyse the behaviour of that realisation. However,
we might be able to collect the location of spatial events according to regular or irregular
timestamps over time. We then have a series of points over time per single object which can
be considered as a single track. For instance, recording the location of a taxi over particular
times results in the route passed by that taxi. We here consider a trajectory pattern as a point
pattern which lives in R

2 but moves over time. This allows us to adapt the point process
statistical methodology into the literature of trajectory patterns.

Definition 2.1 A trajectory pattern is a dataset which provides observed tracks (si) of a set
of moving objects such as cars, humans, etc over a finite time period T . We denote a trajectory
pattern consisted by n > 0 single tracks as S = ¶si : si ⊂ R

2, i = 1, . . . , n♢, that is a countable
set of tracks. Each si is itself a countable set of points, e.g., si = ¶x

si

1 , x
si

2 . · · · , xsi
mi

♢ with
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i = 1, · · · , n where each si consists of mi < ∞ points that are associated with an increasing
set of time stamps t1, ..., tmi

, tj > tj+1∀j.

We point out that the length of each of the tracks si is not necessarily the same for all tracks.
In other words, they might have different start/end times. Each single track si represents
the movement of a moving object within a finite time/area. It is usually supposed that
locations of a moving object are recorded in regular timestamps. However, if timestamps are
not regular, one can still interpolate the locations in regular timestamps. Therefore, each
single track in S might be seen as a set of points corresponding to the considered timestamps.
Discretising all tracks of S according to regular timestamps results in a list of point patterns
(one per each time) which enables us to consider a trajectory pattern as a point pattern
which is changing over time. Therefore, using point pattern methodology, one can study the
behaviour of moving objects over time. For instance, the spatially varying distribution of
objects and the type of interaction between them over time can be of interest. Assume that
the trajectory pattern S is observed within the time period T , thus discretising T into a time
sequence ¶ti : ti ⊂ T, i = 1, . . . , k where ti < tj if i < j♢ generates a collection of spatial
point patterns, say, x1, x2, . . . , xk (k > 1). Details are provided in Section 5. Nevertheless,
one may still consider S as a point process on R

2⊗k, where R
2⊗k means R

2 × · · · × R
2 for k

times when the length of timestamps is k. We do not discuss this other approach here.

3. Classes and methods

In this section, we review different classes of trajectories to handle movement data in R. These
classes were initially defined in the R package spacetime (Pebesma 2012). Before moving into
the details and start analysing trajectory patterns, we load the package with:

R> library("trajectories")

3.1. Track

The class ‘Track’ represents a single track followed by a person, animal or an object. In-
stances of this class are meant to hold a series of consecutive location/timestamps that are
not interrupted by another activity. The class contains five slots: @sp to store the spatial
points, @time to store the corresponding time, @endtime to store the end time when having
generalised line geometries with one value per attribute for a set of points (otherwise, de-
faults to the time defined in @time), @data to store the attributes (covariate information)
and @connections to keep a record of attribute data between points (e.g., distance, duration,
speed and direction). A ‘Track’ object can be created out of an ‘STIDF’ (see Pebesma (2012))
object as follows

R> set.seed(10)

R> library("spacetime")

R> library("sp")

R> t0 = as.POSIXct(as.Date("2013-09-30",tz="CET"))

R> x = c(7,6,5,5,4,3,3)

R> y = c(7,7,6,5,5,6,7)
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R> n = length(x)

R> t = t0 + cumsum(runif(n) * 60)

R> crs = CRS("+proj=longlat +datum=WGS84") # longlat

R> stidf = STIDF(SpatialPoints(cbind(x,y),crs), t,

+ data.frame(co2 = rnorm(n,mean = 10)))

R> A1 = Track(stidf)

R> A1

An object of class Track

7points

bbox:

min max

x 3 7

y 5 7

Time period: [2013-09-30 02:00:30, 2013-09-30 02:02:31]

Figure 2 shows the plot of track A1 passed by person A. By default, distance, duration, speed
and direction are computed as the connections data. Optionally, a data frame containing
additional connections data (covariates) and/or a custom function for calculating the data of
segments between consecutive points can be passed.

Moreover, and using the function as.Track, one can create an object of class ‘Track’ if spatial
coordinates and corresponding times are provided. Additional information can also be passed
to the function as.Track using an argument covariate.

R> x <- runif(10,0,1)

R> y <- runif(10,0,1)

R> date <- seq(as.POSIXct("2015-1-1 0:00"), as.POSIXct("2015-1-1 9:00"),

+ by = "hour")

R> records <- as.data.frame(rpois(10,5))

R> as.Track(x,y,date,covariate = records)

An object of class Track

10points

bbox:

min max

x 0.23958913 0.8382877

y 0.09308813 0.9546536

Time period: [2015-01-01, 2015-01-01 09:00:00]

3.2. Tracks

The class ‘Tracks’ embodies a collection of tracks followed by a single person, animal or
object. The class contains two slots: @tracks to store the tracks as objects of class ‘Track’
and @tracksData to hold a summary record for each particular track (e.g., minimum and
maximum time, total distance and average speed). An object of class ‘Tracks’ can be created
by:
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R> plot(A1)
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Figure 2: Single track A1 passed by person A.

R> x = c(7,6,6,7,7)

R> y = c(6,5,4,4,3)

R> n = length(x)

R> t = max(t) + cumsum(runif(n) * 60)

R> stidf = STIDF(SpatialPoints(cbind(x,y),crs), t,

+ data.frame(co2 = rnorm(n,mean = 10)))

R> A2 = Track(stidf)

R> # Tracks for person A:

R> A = Tracks(list(A1=A1,A2=A2))

R> A

An object of class Tracks

2 tracks followed by a single object

where A1 and A2 are of class ‘Track’. By default, the minimum and maximum coordinates
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and time, the total number of geometries, the total distance as well as the average speed are
computed as the summary information data. As for the ‘Track’ method, a data frame and/or
a custom function can be passed to expand the default data.

3.3. TracksCollection

The class ‘TracksCollection’ represents a collection of tracks followed by many persons,
animals or objects. The class contains two slots: @tracksCollection to store the tracks as
objects of class ‘Tracks’ and @tracksCollectionData to hold summary information about
each particular person, animal or object (e.g., the total number of tracks per each object). A
‘TracksCollection’ object can be created by:

R> # person B, track 1:

R> x = c(2,2,1,1,2,3)

R> y = c(5,4,3,2,2,3)

R> n = length(x)

R> t = max(t) + cumsum(runif(n) * 60)

R> stidf = STIDF(SpatialPoints(cbind(x,y),crs), t,

+ data.frame(co2 = rnorm(n,mean = 10)))

R> B1 = Track(stidf)

R> # person B, track 2:

R> x = c(3,3,4,3,3,4)

R> y = c(5,4,3,2,1,1)

R> n = length(x)

R> t = max(t) + cumsum(runif(n) * 60)

R> stidf = STIDF(SpatialPoints(cbind(x,y),crs), t,

+ data.frame(co2 = rnorm(n,mean = 10)))

R> B2 = Track(stidf)

R> # Tracks for person B:

R> B = Tracks(list(B1=B1,B2=B2))

R> Tr = TracksCollection(list(A=A,B=B))

R> Tr

An object of class TracksCollection

2 collection of tracks followed by 2 object

where A and B are objects of class ‘Tracks’. By default, the total number of tracks as well as
the minimum and maximum coordinates, and time are computed as the summary information
data. As for the ‘Track’ and ‘Tracks’ methods outlined above, a data frame and/or a custom
function can be passed to expand the default data.

3.4. segments

The class ‘segments’ is written to provide a data structure for storing all the segments of a
track, with a segment representing the line between two consecutive points.

Figure 3 shows the classes and their connection. We point out that classes ‘STIDF’,‘STI’ and
‘ST’ belong to the package spacetime inherently .
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Figure 3: Classes for trajectory data in the package trajectories. Solid arrows denote
inheritance. Arrows show the corresponding slot’s class and slot’s names are displayed using
lines accordingly.

A wealth of methods have been implemented to cover the most frequently used use cases.
Table ?? lists some of the methods applied to the objects of classes Track, Tracks and
TracksCollection. Apart from those listed in Table ??, attribute data can be obtained or
replaced by using [], [[]], @ and $.

The use of some methods in Table ?? is shown in the following lines of code. Figure 4 shows
the trellis plot of object Tr from class ‘TracksCollection’ which is previously created. We
point out that we have used slot data of the corresponding tracks as attributes to see their
changes over time.

R> dim(A1)

geometries

7

R> dim(B1)

geometries

6

R> stbox(A1)

x y time

min 3 5 2013-09-30 02:00:30

max 7 7 2013-09-30 02:02:31
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Method Operation

dim Returns the number of spatial points of any track
summary Summarises the internal information

proj4string Retrieves projection attributes
coordinates Retrieves the coordinates of spatial locations
coordnames Retrieves coordinate names of fixes

bbox The box (window) which contains the objects
stbox The spatio-temporal box (window) which contains the objects

aggregate Spatially aggregate track properties (coercing fixes to points)
compare Compares two ‘Track’ objects: for the common time period
dists Compares two ‘Tracks’ using the mean distance, the Frechet distance,etc

downsample Remove fixes from a ‘Track’, starting with the most densely sampled ones
frechetDist Compute Frechet distance between two ‘Track’ objects

stcube Draw a space-time cube
stplot Create trellis plot for ‘TracksCollection’ objects

generalize Resample ‘Track’ to lower freqency or minimal distance
cut Obtain ranges of space and time coordinates

Table 1: Methods implemented in the package trajectories for objects from class
‘Track’,‘Tracks’ and ‘TrackCollection’.

R> downsample(A1,B1)

An object of class Track

6points

bbox:

min max

x 3 7

y 5 7

Time period: [2013-09-30 02:00:30, 2013-09-30 02:02:31]

4. Simulation and model fitting

4.1. Trajectory simulation

Simulating trajectory patterns can be a useful tool to imitate true models and understand
their behaviour. The package trajectories allows simulating tracks using rTrack, rTracks,
rTracksCollection where rTrack() generates a single track, rTracks() simulates a collec-
tion of tracks assumed to be passed by a single object and rTracksCollection is used to
simulate a set of tracks passed by different objects. By default, these functions do not con-
sider any box (or window) for the track to be simulated in and consider origin=c(0,0) as the
origin of the track. However, one can still restrict the track to a desirable closed box using the
argument bbox. If transform=TRUE and no bbox is given, then rTrack transforms the track
to the default box [0, 1] × [0, 1], where in this case the origin is a random point in the default
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R> stplot(Tr, attr = "co2", arrows = TRUE, lwd = 3, by = "IDs",cex.axis=2)
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Figure 4: Co2 consumption over time.

box. If a default box bbox (e.g., m in the following example) is given and transform=TRUE,
then origin is a random point in bbox and the final track is also transformed into bbox. The
function rTrack simulates tracks with a predefined number of points per track (indicated as
n in the code with default 100). However if nrandom=TRUE then it simulates a track with a
random number of points based on a Poisson distribution with parameter n. An example of
these functions is the following:

R> set.seed(10)

R> x <- rTrack();x

An object of class Track

100points

bbox:

min max

x -53.38677 -3.232289

y -53.08787 -1.594295

Time period: [1970-01-01, 1970-01-01 01:39:00]

R> y <- rTrack(transform = T);y

An object of class Track

100points

bbox:

min max

x 0 1
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y 0 1

Time period: [1970-01-01, 1970-01-01 01:39:00]

R> m <- matrix(c(0,10,0,10),nrow=2,byrow = T)

R> w <- rTrack(bbox = m,transform = T);w

An object of class Track

100points

bbox:

min max

x 0 10

y 0 10

Time period: [1970-01-01, 1970-01-01 01:39:00]

R> z <- rTrack(bbox = m,transform = T,nrandom = T);z

An object of class Track

108points

bbox:

min max

x 0 10

y 0 10

Time period: [1970-01-01, 1970-01-01 01:47:00]

Figure 5 shows four different random tracks: x is a random track with all defaults, y is
a random track transformed to a unit box, w is a random track transformed to the box
[0, 10] × [0, 10], and z is a simulated track in a same box as w but with a random number of
points. The number of points in w is 100 whereas z is constituted by 108 points.

4.2. Model fitting

The behaviour of a track might also be studied using available tools for time series modelling.
However, obtaining a proper model is extremely important as it highlights the underlying
structure of the series, and the fitted model can be used for future forecasting. The R package
trajectories can fit ARIMA models to movement data. Using R package forecast, the function
auto.arima.Track fits arima models to the spatial coordinates of an object of class ‘Track’.
Note this is applicable to individuals. See example below.

R> library("forecast")

R> data("A3")

R> auto.arima.Track(A3)

Arima model fitted to x-coordinate: ARIMA(2,2,1)

Arima model fitted to y-coordinate: ARIMA(1,1,1) with drift

5. Exploratory data analysis
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R> par(mfrow=c(2,2),mar=rep(2.2,4))

R> plot(x,lwd=2,main="x");plot(y,lwd=2,main="y")

R> plot(w,lwd=2,main="w");plot(z,lwd=2,main="z")

−50 −40 −30 −20 −10

−
5
0

−
4
0

−
3
0

−
2
0

−
1
0

0

x

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

y

0 2 4 6 8 10

0
2

4
6

8
1
0

w

0 2 4 6 8 10

0
2

4
6

8
1
0

z

Figure 5: Simulated random tracks using rTrack. x is a random track with all defaults. y

is a random track transformed to a unit box. w is a random track transformed to the box
[0, 10] × [0, 10] and z is simulated in the same box as w but with a random number of points.

This section presents some statistical methods, implemented in the R package trajectories, to
analyse the behaviour of trajectory patterns. A single plot of trajectories pattern might not
display interesting information, and if the pattern contains too many tracks, it then needs
some analysis to summarise and reveal concealed information. In particular, one may be
interested in discovering the more visited streets within a city. Other interesting findings could
be the type of interaction between moving objects over time. In short, having a trajectory
pattern, we might be interested in answering the following questions:

1. How does the average distance between objects change over time?

2. How is the spatially varying distribution of objects?
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3. How do moving objects interact with each other? Does their interaction vary over time?

4. How does the spatially varying distribution of objects vary over time?

5.1. Data

We considered a sample of the T-Drive trajectory dataset that contains one-week trajectories
of 10357 taxis during the period of Feb. 2 to Feb. 8, 2008, within Beijing, China. T-drive is a
smart driving direction services based on the global positioning system (GPS) trajectories of
a large number of taxis. The GPS-equipped taxis are mobile sensors probing the traffic flows
on road surfaces. So, the taxi trajectories contain the information of both human knowledge
of experienced drivers and traffic patterns. The total number of points in this dataset is
about 15 million and the total distance of the trajectories reaches up to 9 million kilometres.
For more details about the data, see Yuan, Zheng, Zhang, Xie, Xie, Sun, and Huang (2010);
Yuan, Zheng, Xie, and Sun (2011).

We here point out some useful information about the dataset:

• 21 taxis have no information recorded.

• Regardless of taxis with no information, there are 4694 taxis with less than 10 recorded
locations in at least one day.

• There are tracks with some jumps to the outside of the studied area and it may be
caused by lack of GPS accuracy so that wrong locations have been removed. These
locations might later be recovered by interpolation.

We thus analyse the cleaned dataset which is based on moving data of 5642 taxis. The map
of the studied area is displayed in Figure 6. It is seen that the metropolitan area of Beijing
is almost located in the centre of the map while there are some other townships, airports in
the countryside of Beijing.

In the following, we present the implemented methods in trajectories by applying them to
the taxi movement dataset in Beijing, China.

5.2. Distance analysis

A simple way to get into the nature of movement data is to study the distance between
objects. The function dists provides users with calculating the distance between a pair of
objects of class ‘Tracks’. This considers the distance between tracks when they overlap in
time. The output is a matrix with distances between each pair of tracks or ’NA’, if they do
not overlap in time. A function to calculate distances can be passed to dists, such as mean,
sum, frechetDist, etc.

R> ## create Tracks objects

R> # tracks1 <- Tracks(list(Beijing[[1]], Beijing[[2]]))

R> # tracks2 <- Tracks(list(Beijing[[2]], Beijing[[1]]))

R> # dists(tracks1, tracks2,mean)
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Figure 6: Map of the studied area in Beijing, China.

Average distance over time

The distance between objects over time might discover some interesting information. Studying
pairwise distances over time can somehow reveal the type of interaction between objects.
Having a pattern of tracks, we may be able to see how moving objects interact each other
over time. Moreover, this can highlight the crowded hours within a particular period of time.
We here propose to look at average pairwise distances over time. To do so, one can imitate
the following steps:

1. Based on the time range of all tracks si, create a regular time sequence.

2. Interpolate each track si based on the created time sequence. For this purpose, the
function reTrack can be used. It reconstructs each track si according to a desirable
time sequence.

3. Discretise the trajectory pattern S to a collection of point patterns x1, x2, . . . , xk.
Note that the number of points in each pattern might be different.

4. For each xi, i = 1, . . . , k, calculate pairwise distances between all data points.

5. Report the average of pairwise distances per each time.
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Steps above are implemented in the function avedistTrack. In order to use avedistTrack,
we only need to specify the argument timestamp. It then returns the average distance between
objects based on that timestamps.

R> # par(mfrow=c(1,2))

R> # meandist <- avedistTrack(Beijing,timestamp = "20 mins")

R> # plot(meandist,type="l",lwd=2,cex.axis=1.7,cex.lab=1.7)

R> # distinframe <- data.frame(tsq=attr(meandist,"tsq"),dist=meandist)

R> # dist3rd <- distinframe[substr(distinframe$tsq,start = 1,stop=10)==

R> # "2008-02-03",]

R> # plot(dist3rd$tsq,dist3rd$dist,type="l",xlab="time",

R> # ylab="average distance",lwd=2,cex.axis=1.7,cex.lab=1.7)
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Figure 7: Average pairwise distance between taxis in Beijing, China. Left: Within the
period 2 − 8, Feb 2008. Right: During 3-rd of Feb 2008.

Figure 7 shows the average distance between taxis in Beijing. The left plot shows the average
pairwise distance between taxis for all the week and it is easily seen that there is a daily
trend. In order to see the more crowded hours within a day, we show the average pairwise
distances during the 3-rd of Feb 2008 in the right plot in Figure 7. It can be seen that the
crowded time comes between midday and 17 : 00. Also, it shows how taxis are getting far
from each other during night. Note that small average distances between taxis might be a
sign of traffic during the corresponding hours. We point out that the reason of having larger
average distance in the last two days might be the Chinese new year holidays.

As an alternative, one can use nearest neighbour distances instead of pairwise distances. But
that might not distinguish patterns with different clusters, i.e., patterns with different sets of
tracks concentrated in some particular subregions.
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5.3. Movement smoothing

Aiming at analysing moving objects, it might be of interest to highlight the relationship
of movement with space and time. This section is considered to perform smoothing over
the length of movements per each consecutive time. Thus, it might reveal those areas with
faster/slower movements. For this purpose, the function Track.idw performs inverse-distance
weighted smoothing over a trajectory pattern by imitating the following steps:

1. Follow steps 1-3 in Section 5.2.

2. Using each consecutive point patterns, say xo and xd, build k − 1 segment patterns.

3. For each segment pattern, find the mid-point of segments, mark it with the length of
the corresponding segment.

4. Using the marked mid-points, create k − 1 marked point patterns where each mark
represents the length of movement per location.

5. Apply the function idw from the package spatstat (Baddeley et al. 2015) to each
marked point pattern where it does inverse-distance weighted smoothing.

6. Step 5 returns k − 1 maps in which the average of them is the output of function
Track.idw.

Mathematically speaking, if for each point pattern xi, data points ¶x1, x2, . . . , xni
♢ are marked

by ¶l1, l2, . . . , lni
♢ then the smoothed value at an arbitrary location u ∈ W is

ḡ(u) =
1

k − 1




k−1∑

i=1

ni∑
j=1

wjlj

ni∑
j=1

wj


 , (2)

where

wj =
1

(d(u, xj))p
, (3)

in which d measures the distance between u and xj ∈ xi, lj is the corresponding mark of xj

that is the length of the corresponding segment to xj , ni is the number of points in the i-th
pattern and p is an integer, being 2 as a default value. For details see Baddeley et al. (2015,
Chapter 15).

In order to use Track.idw, we only need to set the argument timestamp. When collecting
data, it may happen to record the location of objects which are actually stopped. Therefore
and to not include them in the movement smoothing, there is an argument epsilon so that
movements with length less than epsilon are not included in the computation. If no epsilon

is set in the function, it then uses all segments. The following code generates an image of
class ‘im’ which reflects the smoothed movement of taxis per 20 minutes.

R> # b <- Track.idw(Beijing,timestamp = "20 mins",epsilon=1000)

R> # plot(b,main="",ribwid=0.04,ribsep=0.02,cex.axis=1.5)
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Figure 8: Movement smoothing for taxi data in Beijing, China based on timestamp = "20

mins" and movements with length longer than 1000 meters.

Figure 8 shows the movement smoothing for taxi data in Beijing according to the timestamp=

"20 mins". Here, we have not considered movements with length less than 1000 meters. In
other words, we assume taxis with the length of movements less than 1000 meters per 20 min-
utes as stopped. This confirms that moving in the centre is slower than countryside/highways
in Beijing, and in particular, it reveals some highways/freeways in which taxis are moving
faster.

After smoothing the length of movements over space, we now turn to see the changes in the
average of the length of movements over time. The function avemove measures the average
length of movements passed by a collection of tracks based on a desirable timestamps. Now,
we apply this to the taxi data in Beijing as follows

R> # q <- avemove(Beijing,timestamp = "20 mins",epsilon=1000)

R> # par(mfrow=c(1,2))

R> # plot(q,type="l",lwd=2,cex.axis=1.7,cex.lab=1.7)

R> # qdata <- data.frame(q,attr(q,"time"))

R> # colnames(qdata) <- c("dist","startingtime")

R> # q3rd <- qdata[substr(qdata$startingtime,start = 1,stop=10)=="2008-02-03",]

R> # plot(q3rd$startingtime,q3rd$dist,type="l",xlab="time (hour)"

R> # ,ylab="average movement",lwd=2,cex.axis=1.7,cex.lab=1.7)

Figure 9 shows the average length of movements per 20 minutes by taxis in Beijing. The daily
trend can be seen in the left plot, and the right plot shows that between midnight and early
morning, the average length of movements is decreasing while from morning till noon there
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Figure 9: Average length of movements by taxis in Beijing, China versus time based on
timestamp = "20 mins", and movements with length longer than 1000 meters. Left: Within
the period 2 − 8 Feb 2008. Right: During the 3-rd of Feb 2008.

is an increase in the length of movements. In the afternoon, there can be seen a decrease in
the average length of movements which might be caused by traffic.

5.4. Intensity function

An exploratory data analysis of point patterns often starts with estimating the intensity
function λ(·) which reflects the mean number of points in different regions and may be seen
as a “heat-map” for the events. A well-known method to estimate the intensity function λ(·)
is by kernel smoothing. Diggle (1985) introduced a uniform edge-corrected kernel estimator

λ̂(u) =
1

cW (u)

n∑

i=1

κ(u − xi), u ∈ W (4)

and Jones (1993) proposed the alternative estimator

λ̂(u) =
n∑

i=1

κ(u − xi)

cW (xi)
, u ∈ W (5)

where

cW (u) =

∫

W
κ(u − v)dv, u ∈ W (6)

is the edge correction factor, and κ is a kernel function. We note that the estimator 4 is
unbiased if the true intensity is uniform while the estimator 5 conserves mass, meaning that∫

W λ̂(u)du = n where n is the number of points in the point pattern in question. Both
estimators 4 and 5 can be computed using the R package spatstat for planar point patterns.
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We here avoid mathematical definitions of a point process and assume that X is finite, i.e.,
any realisation is a point pattern with finite number of points, and the number of points in
any subregion is a well-defined random variable (Baddeley et al. 2015). For technical details
of point processes see Møller and Waagepetersen (2003); Daley and Vere-Jones (2007).

Being able to estimate the intensity function of planar spatial point patterns, we are here
interested in estimating the intensity function for trajectory patterns. Such estimator can
highlight well-traveled areas based on the tracks of moving objects (e.g., humans, cars) within
the time period in question. We next propose an average intensity estimate using the following
steps:

1. Follow steps 1 − 3 as in Section 5.2.

2. For each xi, estimate the intensity function, say, λi(·).

3. The average over all estimated intensity functions λ̂i may be considered as an esti-
mated intensity for the trajectory pattern S.

Mathematically speaking, and (for instance) using the intensity estimator 5, we propose

̂̂
λ(u) =

1

k

k∑

i=1

λ̂i(u) =
1

k

k∑

i=1

ni∑

j=1

κ(u − xj)

cW (xj)
, u ∈ W, (7)

as an estimator of the intensity of the trajectory pattern S. Intuitively, we interpret
̂̂
λ(u)

as the average expected number of points (objects) within the time period T in a small
area around u. As a simple example, consider the movements of cars within a city in a
particular day, the estimator 7 reveals the more dense streets, highways, freeways, etc in
that day. Intensity estimator 7, possible to use both edge corrections, is implemented in the
trajectories package using the function density.list. The function density.list builds
the point patterns x1, x2, . . . , xk and pass them to the function density.ppp in the package
spatstat.

We next turn to calculate the average estimated intensity of the taxi data using the estima-
tor 7.

R> # library("spatstat")

R> # d <- density(Beijing,timestamp = "20 mins",bw.ppl)

R> # par(mfrow=c(1,2),mar=rep(1,4))

R> # plot(d,main="",ribwid=0.04,ribsep=0.02,cex.axis=1.7)

R> # #focus on the center

R> # w <- owin(c(440000,455000),c(4410000,4430000))

R> # pps <- attr(d,"ppps")

R> # npps <- lapply(X=1:length(pps),FUN = function(i){

R> # pps[[i]][w]

R> # })

R> #

R> # centerimg <- lapply(X=1:length(npps),FUN = function(i){
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R> # density(npps[[i]],bw.ppl(npps[[i]]))

R> # })

R> # fcenterimg <- Reduce("+",centerimg)/length(centerimg)

R> #

R> # plot(fcenterimg,main="",ribwid=0.04,ribsep=0.02,cex.axis=1.7)

Figure 10 shows the estimated intensity using the estimator 4 for both Beijing and its
metropolitan area. The bandwidth has been selected using a likelihood cross-validation
method and the function bw.ppl in spatstat. Other bandwidth selection methods can also
be passed to density.list. Figure 10 highlights the most well-traveled areas in which those
areas in the countryside with higher intensities (left plot) are some townships or airports.
The right plot highlights the crowded routes within the centre of Beijing, China.
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Figure 10: Estimated intensity function. Left: Beijing. Right: Beijing metropolitan area.

One may still think of adaptive intensity estimators such as the Voronoi estimator (Ord 1978;
Barr and Schoenberg 2010). We here point out that as the estimator 7 is built based on an
average of estimated intensities of a set of spatial point patterns, one can estimate each of
λi(·) using adaptive estimators resulting in a final adaptive estimator for the corresponding
trajectory pattern.

5.5. Chi maps

After discretising the trajectory pattern S to some point patterns and being able to estimate
the individual intensity functions λi(·), one may think of discovering the areas with more/less
events than the expected number. This motivates us to think of χ2 statistics

χ2 =
o − e√

e
, (8)
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which measures the discrepancy between the expected number (e) and the observed number
(o). This can be easily applied to the estimated intensity functions λ̂1, λ̂2, . . . , λ̂k and in any
time ti, i = 1, . . . , k, and as a result we can see where the estimated intensity differs from the
expected intensity. For example, for a fixed time t = t1,

et1
(u) =

k∑
i=1

λ̂i(u)
∑

v∈W

λ̂1(v)

k∑
i=1

∑
v∈W

λ̂i(v)

, u ∈ W,

is the expected intensity at time t = t1 and location u ∈ W . Doing so for all u ∈ W enables
us to draw a map of χ2 values in a fixed time. The resulting map discloses the areas where
the estimated intensity differs from the expected intensity. The function chimaps generates a
map based on a given timestamp and rank. The argument rank is a number between one and
the length of the generated time sequence based on the given timestamp, and with default
one.

The chi maps of the 3-rd of Feb based on three different ranks are displayed in Figure 11.
Values of each pixel is calculated by equation 8. We show the chi maps for three different
times during the day in which changes over time can be seen. The left plot of Figure 11 shows
the chi map at 06:10:44 so that the estimated intensity is higher than the expected intensity
in the countryside. The reason for this might be the movements from countryside to the city
center in the early morning. The middle plot of Figure 11 shows that the estimated intensity
in the city is higher than the expected intensity. This may be caused by heavier traffic in
the city during the day than in the countryside. In the right plot of Figure 11, although
the estimated intensity is still slightly higher than the expected one in the city, we can see
that the χ2 statistic 8 takes values around 0 almost everywhere at night. These three plots
together confirm the changes in the values of the χ2 statistic 8 over time so that the mass
is moving to the city in the morning and goes away in the evening. This behaviour may be
explained by the movements to the city in the morning and moving back to the countryside
in the evening.

R> # ch <- chimaps(Beijing,timestamp = "20 mins",rank = 1)

R> # chall <- attr(ch,"ims")

R> # minmax <- lapply(X=1:length(chall),function(i){

R> # return(list(min(chall[[i]]$v),max(chall[[i]]$v)))

R> # })

R> # minmax <- do.call("rbind",minmax)

R> # col5 <- colorRampPalette(c(’blue’,’white’,’red’))

R> # color_levels=200

R> # par(mar=c(0,0,1,1))

R> # par(mfrow=c(1,3))

R> # plot(chall[[51]],zlim=c(-max(abs(unlist(minmax))),max(abs(unlist(minmax))))

R> # ,main="",ribwid=0.04,ribsep=0.02,

R> # col=col5(n=color_levels),cex.axis=1.7)

R> # title(attr(ch,"timevec")[51],line = -10,cex.main=2)

R> # plot(chall[[75]],zlim=c(-max(abs(unlist(minmax))),max(abs(unlist(minmax))))

R> # ,main="",ribwid=0.04,ribsep=0.02,
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R> # col=col5(n=color_levels),cex.axis=1.7)

R> # title(attr(ch,"timevec")[75],line = -10,cex.main=2)

R> # plot(chall[[104]],zlim=c(-max(abs(unlist(minmax))),max(abs(unlist(minmax))))

R> # ,main="",ribwid=0.04,ribsep=0.02,

R> # col=col5(n=color_levels),cex.axis=1.7)

R> # title(attr(ch,"timevec")[104],line = -10,cex.main=2)
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Figure 11: Chi maps. Left: in the morning, Middle: in the afternoon, Right: at night.
Exact time is reported on top of each plot.

5.6. Second-order summary statistics

After discretising a trajectory pattern and estimating the intensity function of each single
resulted point pattern, we now turn to look at the interaction between the moving objects
over time. We are interested in distinguishing whether objects tend to move independently
or they show some kind of dependence (e.g., clustering or inhibition). A common way in
the point process literature is to use summary statistics such as K- and pair correlation
functions (Ripley 1977; Baddeley, Møller, and Waagepetersen 2000; Baddeley et al. 2015).
Pairwise distances are the hint here: if objects tend to be close to each other, then most of
the pairwise distances are going to be small, and if they favour to stand far, then only a few
of the pairwise distances are small (Baddeley et al. 2015). Baddeley et al. (2000) considered
second-order intensity-reweighted stationary point processes, and defined the inhomogeneous
K−function as

Kinhom(r) =
1

♣B♣E
∑

xi∈B

∑

xj ̸=xi

1¶∥xi − xj∥ ≤ r♢
λ(xi) λ(xj)

, r ≥ 0 (9)

for any region B ⊂ R
2 with area ♣B♣ > 0. The pair correlation function is also given by

g(u, v) =
λ2(u, v)

λ(u)λ(v)
, u, v ∈ W. (10)

We point out that for Poisson point processes Kinhom(r) = πr2(g(r) = 1), and Kinhom(r) >

πr2(g(r) > 1) indicates clustering, while Kinhom(r) < πr2(g(r) < 1) shows inhibition between
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points. There is a close relationship between the K-function 9 and the pair correlation
function 10 as

g(r) =
K

′

inhom(r)

πr2
, r > 0

where K
′

inhom is the derivative of Kinhom. The plug-in estimator of the K-function 9 is of the
form

K̂(r) =
1

♣W ♣
∑

i

∑

j

1¶dij ≤ r♢e(xi, xj , r)

λ̂(xi) λ̂(xj)
, r ≥ 0 (11)

where dij is the distance between xi, xj and e(xi, xj , r) is an edge correction. For more details
see Møller and Waagepetersen (2003, Chapter 4); Illian et al. (2008); Diggle (2013); Gabriel
(2014); Baddeley et al. (2015, Chapter 7).

Summary statistics such as the K- and the pair correlation functions are used to analyse the
type of interaction between points. Having this in mind, we next turn to use these functions
in analysing the trajectory pattern S. Similar to our proposal for the intensity function and
using summary statistics for point patterns, we here propose a variability area for the K- and
the pair correlation functions as follows:

1. According to regular timestamps, discretise the trajectory pattern S and build the
point patterns x1, x2, . . . , xk.

2. For all the resulted point patterns x1, x2, . . . , xk, estimate the K-function using 9.

3. From the estimated K-functions K̂1, K̂2, . . . , K̂k, build the pointwise variability area
of the K-function, i.e., for each value of distance argument r, sort K̂i(r) and then
take the lowest and highest value amongst all; doing so for a sequence of r results in
a variability area for the K-function. This shows how the type of interaction between
objects changes over time.

Note that, steps above can be applied to the pair correlation function as well.

In both functions above, users can take advantage of the bandwidth selection to first estimate
the intensity function and then pass estimated intensities to the function Kinhom or pcfinhom.
Default is to not pass any estimated intensity function to Kinhom or pcfinhom in which the
intensity will be estimated using the ‘leave-one-out’ kernel smoother (Baddeley et al. 2000,
2015). Different edge corrections can be also passed to Kinhom.Track and pcfinhom.Track.

Finally and taking into account that estimated intensity in Figure 10 represent a non-unifrom
distribution and/or clustering behaviour, we show the variability area of K-function and pair
correlation function over time in Figure 12 (considering the “translate” correction, see Gabriel
(2014)). The left plot displays the variation of K-function, showing that for small distances
taxis tend to have a clustering behaviour while for larger distances they favour inhibition. The
right plot of the variation of the pair correlation function also confirms the same behaviour.
Due to the preference of moving within particular zones, K-function and pair correlation
function might result as what is displayed in Figure 12. In other words, taxis might prefer to
take passengers to close destinations within particular zones rather than further destinations.
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Argument q is to use quantiles of the values of K-function (or pair correlation function) rather
than using maximum and minimum. Default q=0 uses maximum and minimum.

R> # K <- Kinhom.Track(Beijing,correction = "translate",

R> # timestamp = "20 mins",q=0)

R> # par(mfrow=c(1,2),mar=rep(5,4))

R> # plot(K,cex.axis=1.7,cex.lab=1.5,cex=2)

R> # g <- pcfinhom.Track(Beijing,timestamp = "20 mins",q=0)

R> # plot(g,cex.axis=1.7,cex.lab=1.5,cex=2)
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Figure 12: Variability area of second-order summary statistics for taxi data in Beijing,
China. Left: K-function, Right: pair correlation function.

We point out that as this kind of discretising trajectory patterns results in a set of spatial
point patterns, it may also drives us to consider them as replicated spatial point patterns.
Therefore, one may be able to introduce a single K-function or pair correlation function for
all patterns. Note that in this case, point patterns are not independent. For more details, see
Diggle (2013, Section 5.4).

6. Summary and discussion

Analysing trajectory data is often a challenge as moving objects are living in space while
moving in time. Such data might be analysed in space or time separately. However, one may
look at trajectory patterns with a different perspective.

In this paper, we introduced a set of classes to handle trajectory data and defined a set of
methods to summarise trajectory patterns. We have considered different classes to handle
tracks passed by one object or a group of objects. We also aimed at statistically analysing
trajectory data in space and see the changes in the behaviour of data over time. To do so,
the literature of spatial point processes has been adapted to trajectory patterns. An average
intensity function is defined for a trajectory pattern with tracks that overlap in time and
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it nicely reveals the more visited spots, streets, highways, etc. Pairwise distances between
different objects have been also considered in trajectories showing how moving objects interact
over time. Moreover, we have implemented methods to smooth the length of movements over
time which highlights where objects move faster/slower. In addition, the discrepancy between
the estimated intensity and the expected intensity per location per time can be studied in
trajectories which shows how the mass is moving within the studied area over time. We
finally presented a variability area for second-order summary statistics such as K-function
and pair correlation function which displays the type of interaction between objects over time,
highlighting possible clustering or inhibition.

To perform an exploratory data analysis, we finally applied the developed methodologies to
a taxi data from Beijing, China. The results nicely highlight the behaviour of taxis over
time. We have recognized where the more visited spots are and also at what time data
pattern is denser or objects get closer to each other. We smoothed the movements of taxis
and discovered where and at what time they move faster. Not surprisingly, results confirm
that moving within the city is slower than countryside or highways. Also, in the afternoon
there is a decrease in the length of movements which might be affected by traffic. Chi maps
have been studied showing how the mass is moving within the studied area. They display
that objects are moving from countryside to the city in the morning making a heavy traffic
in the city in the afternoon, as the estimated intensity is higher than the expected one. Chi
maps also confirm that the discrepancy between the estimated intensity and the expected one
is less during the evening than any other time. The variability area of K-function and pair
correlation function show that for small distances, taxis tend to show a clustering behaviour
while for longer distances they show repulsion.

We leave open the analysis of the effect of the environment on moving objects and the corre-
sponding parametric analysis for future works.
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