Package 'treeducken'

October 14, 2022

```
Type Package
Title Nested Phylogenetic Tree Simulator
Version 1.1.0
Description Simulates nested phylogenetic trees (gene trees in species tree,
      symbiont trees in host trees) using birth-death processes and transfers
      between lineages. Simulations of gene trees within species trees are performed
      using a three-tree model with species trees, locus trees, and gene trees.
      The cophylogenetic birth-death process is used to simulate sets of host and
      symbiont trees with extant associations between tips.
      For more information about the three-tree model see:
      Mallo et al. (2015) <doi:10.1093/sysbio/syv082>,
      Rasmussen and Kellis (2012) <doi:10.1101/gr.123901.111>.
License GPL-3
SystemRequirements C++11
Imports Rcpp (>= 1.0.2), apTreeshape, graphics, methods
Depends ape
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 7.1.1
LazyData true
Encoding UTF-8
Suggests knitr, rmarkdown, testthat
VignetteBuilder knitr
NeedsCompilation yes
Author Wade Dismukes [aut, cre],
      Tracy A. Heath [aut],
      Josh Justison [ctb],
      Damien de Vienne [ctb],
      Liam Revell [ctb],
      Emmanuel Paradis [ctb],
      Klaus Schliep [ctb],
      Ben Bolker [ctb],
      Luke J. Harmon [ctb],
```

Joseph W. Brown [ctb]

45

Index

Maintainer Wade Dismukes <wade.dismukes@gmail.com>

Repository CRAN

Date/Publication 2021-03-02 05:20:03 UTC

R topics documented:

treeducken-package	3
add_events	3
add_scalebar	5
build_historical_association_matrix	5
c.cophy	6
calculate_expected_leaves_locustree	8
calculate_expected_leaves_sptree	9
collapse_locus_subtree	10
convert_assoc_table_to_matrix	11
convert_to_cophy	12
cophy_summary_stat_by_indx	13
count_cherries	14
draw_cophy	15
draw_curve	17
drop_extinct	17
estimate_node_heights	18
event_history	19
genetree_summary_stat	21
get_loci	22
get_tip_labels_tree_list	23
host_tree	23
is.cophy	26
is_extinct	27
make_textbox	28
parafit_stat	29
plot.cophy	30
retrieve_parent_genetrees	32
sim_cophyBD	33
- 1 7 -	35
-	37
sim_msc	39
sim_multilocus_coal	40
sim_stBD	42
sim_stBD_t	43
str.multiCophy	44

add_events 3

treeducken-package

treeducken: simulates cophylogenetic systems & nested phylogenies

Description

treeducken simulates cophylogenetic systems such as host and symbiont pairs. This is done using the sim_cophylo_bdp function. This function simulates a host tree and a symbiont tree simultaneously using a matrix describing the associations between contemporaneous hosts and symbionts. These simulations allow for varying rates of host-shift speciation and cospeciation in addition to independent birth and death rates of the host and the symbiont trees. treeducken is also able to simulate nested phylogenies such as might be expected in the case of gene tree and species tree scenarios.

Details

Package: treeducken
Type: Package
Version: 1.0

Date: 2020-03-25 License: GPL-2 LazyLoad: yes

Author(s)

Wade Dismukes <wade.dismukes@gmail.com>

References

Dismukes W. and Tracy A. Heath, Something something (work-in-progress)

See Also

```
ape, geiger, TreeSim, PhyTools
```

add_events

Add events from sim_cophyBD to plot.cophy

Description

This will plot the classical cophylogenetic events onto the plot from plot.cophy if event_history is non-empty. At present this only works with phylograms.

add_events

Usage

```
add_events(
  cophy_obj,
  legend = TRUE,
  pch = NULL,
  col = NULL,
  gap = 1,
  fsize = 1,
  type = "phylogram",
  show_tip_label = TRUE
)
```

Arguments

cophy_obj	Cophylogenetic object
legend	Boolean to turn on or off the legend
pch	Length 8 vector of plotting symbols to be used
col	Length 8 vector of colors to be used in plot
gap	the gap between the two trees
fsize	the font size of tips (this must be set the same as used in plot.cophy)
type	the type of graph ("phylogram" or "cladogram")
show_tip_label	Boolean indicating whether the plot has tip labels or not

Details

The pch and color vectors place symbols or colors for the different events. The order this vector is input determines which symbol corresponds to which event. * Position 1 = cospeciation * Position 2 = host speciation * Position 3 = host extinction * Position 4 = symbiont speciation * Position 5 = symbiont extinction * Position 6 = host spread or host-switch symbiont speciation * Position 7 = anagenetic symbiont dispersal * Position 8 = anadenetic symbiont extirpation

By default a color vector is used in this order: purple, red, blue, darkorange, cyan, yellow, brown, seagreen

add_scalebar 5

add_scalebar

Add scale bar to cophylo plot

Description

This function plots a host and symbiont tree given the object returned by 'sim_cophyBD'.

Usage

```
add_scalebar(host_coords, symb_coords, fsize)
```

Arguments

host_coords Host x,y coordinates symb_coords Symb x,y coordinates fsize Font size of scale bar

build_historical_association_matrix

Reconstruct historical association matrix

Description

Reconstruct historical association matrix

Usage

```
build_historical_association_matrix(t, tr_pair_obj)
get_assoc(t, tr_pair_obj)
```

Arguments

t The time of interest

tr_pair_obj The tree pair object from 'sim_cophyBD'

6 c.cophy

Details

Given a time and a tree pair object produced by the 'sim_cophyBD' object will produce the association matrix at that time point for the tree object. USER WARNING: this is still in development, and likely will not work all the time.

Value

Matrix of the associations at given time

Examples

```
host_mu <- 1.0 # death rate
host_lambda <- 2.0 # birth rate</pre>
numb_replicates <- 1</pre>
time <- 1.0
symb_mu < - 0.2
symb_lambda <- 0.4
host_shift_rate <- 0.0</pre>
cosp_rate <- 2.0
cophylo_pair <- sim_cophyBD(hbr = host_lambda,</pre>
                             hdr = host_mu,
                             cosp_rate = cosp_rate,
                             host_exp_rate = host_shift_rate,
                             sdr = symb_mu,
                             sbr = symb_lambda,
                             numbsim = numb_replicates,
                             time_to_sim = time)
time <- 1.0
assoc_mat_at_t <- get_assoc(t=time, tr_pair_obj = cophylo_pair[[1]])</pre>
```

c.cophy

Combine cophylogenetic sets into a multiCophy object

Description

Combines cophylogenetic sets into a multiCophy object.

Usage

```
## S3 method for class 'cophy'
c(...)
## S3 method for class 'multiCophy'
c(...)
```

c.cophy 7

Arguments

... Values of class 'cophy'

Value

An object of class 'multiCophy'

Functions

• c.multiCophy: Combines two multiCophy objects into one multiCophy object

Author(s)

Wade Dismukes and Emmanuel Paradis

See Also

'c' generic function

```
h_lambda <- 1.0
h_mu <- 0.3
c_lambda <- 0.0
s_{a} - 1.0
s_mu <- 0.3
s_her <- 0.0
host_symb_sets <- sim_cophylo_bdp(hbr = h_lambda,</pre>
                                   hdr = h_mu
                                   sbr = s_lambda,
                                   cosp_rate = c_lambda,
                                   sdr = s_mu,
                                   host_exp_rate = s_her,
                                   time_to_sim = 1.0,
                                   numbsim = 2)
host_symb_sets2 <- sim_cophylo_bdp(hbr = h_lambda,
                                   hdr = h_mu,
                                   sbr = s_{lambda}
                                   cosp_rate = c_lambda,
                                   sdr = s_mu,
                                   host_exp_rate = s_her,
                                   time_to_sim = 1.0,
                                   numbsim = 2)
multi_host_symb <- c(host_symb_sets[[1]], host_symb_sets2[[2]])</pre>
multi_host_symb_alt <- c(host_symb_sets, host_symb_sets2)</pre>
```

```
calculate_expected_leaves_locustree

Calculate expected leaves of a locus tree
```

Description

Calculate expected leaves of a locus tree

Usage

```
calculate_expected_leaves_locustree(t, dup_rate, loss_rate, num_species)
ave_tips_lt(t, dup_rate, loss_rate, num_species)
```

Arguments

t time to simulate until (the length of the species tree)

dup_rate gene birth rate loss_rate gene death rate

num_species number of leaves on the species tree

Details

Calculates the expected number of leaves for a birth-death simulation given a gene birth and death rate, a time, and the number of leaves on the species tree that the locus tree is to be simulated upon.

Value

The expected number of leaves

References

Mallo, D., de Oliveira Martins, L., & Posada, D. (2016). SimPhy: phylogenomic simulation of gene, locus, and species trees. Systematic biology, 65(2), 334-344.

calculate_expected_leaves_sptree

Calculate expected leaves of a species tree

Description

Calculate expected leaves of a species tree

Usage

```
calculate_expected_leaves_sptree(lambda, mu, t)
ave_tips_st(lambda, mu, t)
```

Arguments

lambda speciation rate mu extinction rate

t time to simulate until

Details

Calculates the expected number of leaves for a birth-death simulation given a speciation and extinction rate and a time.

Value

The expected number of leaves

References

Mooers, A., Gascuel, O., Stadler, T., Li, H., & Steel, M. (2012). Branch lengths on birth–death trees and the expected loss of phylogenetic diversity. Systematic biology, 61(2), 195-203.

```
spec_rate <- 1.0
ext_rate <- 0.5
time <- 2
ave_tips_st(spec_rate, ext_rate, time)</pre>
```

```
collapse_locus_subtree
```

Collapse a clade into a single tip

Description

Collapse a clade into a single tip

Usage

```
collapse_locus_subtree(list_of_subtrees, locus_to_collapse)
collapse_clade(list_of_subtrees, locus_to_collapse)
```

Arguments

Details

Takes a clade as input and collapses that clade to one tip in all trees in 'list_of_subtrees'.

Value

multiPhy (list of trees) with the subtree in question collapse

```
lambda <- 1.0
mu <- 0.2
nt <- 10
trees <- sim_stBD(sbr = lambda, sdr = mu, numbsim = 1, n_tips = nt)
subtrees_of_trees <- ape::subtrees(trees[[1]])
st_of_interest <- subtrees_of_trees[[1]]
collapse_st_of_interest <- collapse_locus_subtree(trees, st_of_interest)</pre>
```

```
convert_assoc_table_to_matrix
```

Convert a table with host and symbiont associations to a matrix

Description

Converts a table of associations to an association matrix with rows as symbionts and columns as host.

Usage

```
convert_assoc_table_to_matrix(assoc_table)
make_mat(assoc_table)
```

Arguments

assoc_table A dataframe with two columns

Details

Converts a dataframe with first column listing the host individually and the second column as the symbionts. If hosts have more than one symbiont list these with commas. For example, if the table is a tab-delimited file then a row should read: "Hostus_mostus Symbiont_1, Symbiont_2".

Value

A matrix with rows as symbionts and columns as hosts with 1's representing an association.

12 convert_to_cophy

convert_to_cophy Converts an object into an object of type cophy

Description

Functions for converting either a list of three components (host_tree, symb_tree, and association_mat) into an object of class cophy Otherwise turns arguments into the cophy object if inputting a hostTree of type 'phylo', a symbiont tree of type 'phylo', and a matrix of type eventHistory.

Usage

```
convert_to_cophy(hostTree, symbTree, assocMat, eventHistory = NULL)
to_cophy(hostTree, symbTree, assocMat, eventHistory = NULL)
```

Arguments

hostTree An object of type 'phylo' symbTree An object of type 'phylo'

assocMat A matrix with rows being extant symbionts and columns being extant hosts

eventHistory An optional data frame of four columns: Symbiont Index, Host Index, Event

Type (see details), and Event Time

Details

The association matrix must be with rows equal to the number of extant symbionts and columns equal to the number of extant hosts. Non-zero values in this matrix indicate associations (typically this will be a matrix of just zeros and ones).

The eventHistory parameter has four columns: Symbiont Index, Host Index, Event Type (see details), and Event Time. The indexing of the first two columns should follow the indexing of the 'phylo' objects 'hostTree' and 'symbTree'. The types of events are as follows: *HG - a host speciation event *HL - a host extinction event *C - a cospeciation event *SG - a symbiont speciation event *SL - a symbiont extinction event *AG - an association gain between symbiont x and host y *AL - an association loss between symbiont x and host y

Value

An object of type cophy

See Also

is.cophy

Examples

```
gopher_lice_map_path <- system.file("extdata",</pre>
                                     "gopher_lice_mapping.txt",
                                      package = "treeducken")
gopher_lice_map <- read.table(gopher_lice_map_path,</pre>
                                 stringsAsFactors = FALSE,
                                 header = TRUE)
gopher_tree_path <- system.file("extdata",</pre>
                                   "gophers_bd.tre",
                                    package = "treeducken")
gopher_lice_assoc_matrix <- convert_assoc_table_to_matrix(gopher_lice_map)</pre>
gopher_tree <- ape::read.nexus(gopher_tree_path)</pre>
lice_tree_path <- system.file("extdata",</pre>
                                 "lice_bd.tre",
                                  package = "treeducken")
lice_tree <- ape::read.nexus(lice_tree_path)</pre>
gopher_lice_cophy <- to_cophy(hostTree = gopher_tree,</pre>
                                             symbTree = lice_tree,
                                             assocMat = gopher_lice_assoc_matrix)
```

```
cophy_summary_stat_by_indx
```

Calculates summary statistics for cophylogenetic objects

Description

For cophylogenetic objects produced in treeducken via 'sim_cophyBD', calculates the numbers of different events of interest. In addition, calculates and tests the ParaFit test.

Usage

```
cophy_summary_stat_by_indx(cophy_obj, cophy_obj_indx)
summarize_1cophy(cophy_obj, cophy_obj_indx)
cophy_summary_stat(cophy_obj)
summarize_cophy(cophy_obj)
```

Arguments

```
cophy_obj The cophylogenetic object produced via 'sim_cophyBD' cophy_obj_indx The index with 'cophy_obj' for 'summarize_1cophy'
```

14 count_cherries

Value

A vector consisting of (in order) cospeciations, host speciations, host extinctions, symbiont speciations, symbiont extinctions, host spread/switch speciations, symbiont dispersals, symbiont extirpations, parafit statistic, and parafit p-value

A dataframe containing statistics relevant to cophylogenetic analysis

Functions

• cophy_summary_stat_by_indx: Calculates the summary statistics for one index of the list of cophylogenetic objects

Examples

```
host_mu <- 0.5 # death rate
host_lambda <- 2.0 # birth rate
numb_replicates <- 1</pre>
time <- 1.0
symb_mu < - 0.2
symb_lambda <- 0.4
host_shift_rate <- 0.0</pre>
cosp_rate <- 2.0
cophy_pair <- sim_cophyBD(hbr = host_lambda,</pre>
                             hdr = host_mu,
                             cosp_rate = cosp_rate,
                             host_exp_rate = host_shift_rate,
                             sdr = symb_mu,
                             sbr = symb_lambda,
                             numbsim = numb_replicates,
                             time_to_sim = time)
summary_stats <- summarize_cophy(cophy_pair)</pre>
```

count_cherries

Calculate cherry statistic for gene-trees

Description

Calculate cherry statistic according to the definition given in McKenzie and Steel 2000 (see below for reference)

Usage

```
count_cherries(tree)
```

Arguments

tree

an object of class "phylo"

draw_cophy 15

Details

This calculates the value for the cherry test statistic on a rooted tree. Note that this does not perform the actual hypothesis test against Yule or uniform tree models.

Value

The value fo cherries on a tree

Author(s)

Emmanuel Paradis

References

McKenzie, A. and Steel, M. (2000) Distributions of cherries for two models of trees. Mathematical Biosciences, 164, 81–92.

Examples

```
# first simulate a species tree
mu <- 0.5
lambda <- 1.0
nt <- 6
tr <- sim_stBD(sbr = lambda, sdr = mu, numbsim = 1, n_tips = nt)
treeducken::count_cherries(tr[[1]])
# to do the hypothesis test you can use the ape version of this function
ape::cherry(tr[[1]])</pre>
```

draw_cophy

Internal tree plot function

Description

internal plot function from ape::plotCophylo2 under GPL v. 2

Usage

```
draw_cophy(
    x,
    y,
    assoc = assoc,
    use_edge_length = use_edge_length,
    length_line = length_line,
    type = type,
    return = return,
    col = col,
    lwd = lwd,
    lty = lty,
```

16 draw_cophy

```
show_tip_label = show_tip_label,
font = font,
fsize = fsize,
gap = gap,
show_scalebar = show_scalebar,
scalebar_fsize = scalebar_fsize,
...
)
```

Arguments

x Host tree as phylo object

y Symb tree as phylo object

assoc Association matrix

use_edge_length

Boolean to draw trees with edge length or not

length_line Length of interactions lines

type string "phylogram" or "cladogram"

return Return an object or no (default = FALSE)

col What color to draw links between trees

lwd Width of links between trees

1ty Type of line to draw between trees

show_tip_label Boolean for showing labels

font What font to use (bold, italic (default), etc.)

fsize What size font as a character expansion factor (same as cex)

gap Gap between tips and tip names

show_scalebar Boolean for turning on and off the scalebar

scalebar_fsize Font size of scalebar

... Other plotting parameters

References

Paradis E. & Schliep K. 2019. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35: 526-528.

draw_curve 17

draw	curve

Curve draw function

Description

internal function to draw curved links between tips modified from Liam Revell phytools package under GPL v. 2

Usage

```
draw\_curve(x, y, scale = 0.01, ...)
```

Arguments

x x positions on graphy y positions on graph

scale Scale of the logistic (which is where the curve comes from)

... Other plotting parameters

Author(s)

Wade Dismukes and Liam J Revell

References

Revell, L.J. (2012), phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3: 217-223. doi:10.1111/j.2041-210X.2011.00169.x

drop_extinct

Drops extinct tips from tree

Description

Drops extinct tips from tree

Usage

```
drop_extinct(phy, tol = NULL)
```

Arguments

phy a 'phylo' class object

tol tolerance in decimal values for branch lengths

Value

A 'phylo' class object with extinct tips removed

Author(s)

LJ Harmon, and JW Brown This is a direct port of the geiger function, I import it here for convenience. This code is copied under GPL 3 license.

References

Pennell M, Eastman J, Slater G, Brown J, Uyeda J, Fitzjohn R, Alfaro M, Harmon L (2014). "geiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees." Bioinformatics, 30, 2216-2218

Examples

Description

Calculates the expected time to branching point of a species tree for a birth-death simulation given a speciation and extinction rate and a number of leaves, and a branching point.

Usage

```
estimate_node_heights(lambda, mu, n, k = 1)
node_heights(lambda, mu, n, k = 1)
```

event_history 19

Arguments

lambda	speciation rate
mu	extinction rate
n	number of tips on tree
k	branching point ($k = 1$ is the root and is the default)

Details

By default this branching point is 1 which corresponds to the root, k = 2 corresponds to the first branching point after the root, k = 3 the second, and so on. For more details see Gernhard 2008.

Value

The expected branching time

References

Gernhard, T. (2008). The conditioned reconstructed process. Journal of theoretical biology, 253(4), 769-778.

Examples

```
spec_rate <- 1.0
ext_rate <- 0.5
nt <- 10
node_heights(lambda = spec_rate, mu = ext_rate, n = nt)
node_heights(lambda = spec_rate, mu = ext_rate, n = nt, k = 2)</pre>
```

event_history

Summarize a cophylogenetic set

Description

Several utility functions for cophylogenetic set summarization. Including functions for printing an entire summary, and a summary of each part: host_tree, symb_tree, association_mat, and event_history.

Usage

```
event_history(cophy)
## S3 method for class 'cophy'
event_history(cophy)
## S3 method for class 'cophy'
summary(object, ...)
```

20 event_history

Arguments

cophy	Cophylogenetic set
object	An object of class 'cophy'
	Further arguments used in generic classes

Details

The summary for a cophylogenetic set outputs a summary of the host tree and the symbiont tree. The number of rows and columns of the association matrix, and a summary of the event_history.

Value

Summary returns NULL.

Functions

- event_history: Returns event history of a cophylogenetic set
- event_history.cophy: Returns event history of a cophylogenetic set

Author(s)

Wade Dismukes and Emmanuel Paradis

See Also

sim_cophylo_bdp, summary for the generic, multiCophy, c.cophy

21

genetree_summary_stat Calculate summary statistics for gene trees

Description

Calculates summary statistics including Colless' statistic, gamma statistic of the locus tree input as an index as part of a list, gamma statistic of gene tree, sackin statistic, cherry statistic, and time to most recent common ancestor

Usage

```
genetree_summary_stat(lt_obj, lt_indx)
summarize_gt(lt_obj, lt_indx)
```

Arguments

lt_obj Locus tree object obtain from 'sim_lt_gt_mlc'lt_indx Index of locus tree object of interest

Value

Dataframe with summary statistics for each gene tree

get_loci

get_loci

Separate a locus tree into loci

Description

Separate a locus tree into loci

Usage

```
get_loci(locus_tree)
```

Arguments

```
locus_tree tree of type 'phy'
```

Details

This separates loci based on node labels "D[A-Z]". This is intended to be used internally, but should work with other trees where duplications are marked similarly.

Value

list of subtrees (with 'locus_tree' at the end')

```
get_tip_labels_tree_list
```

Get all the tip labels of a 'multiPhylo' object

Description

Get all the tip labels of a 'multiPhylo' object

Usage

```
get_tip_labels_tree_list(multi_tree)
get_tipnames(multi_tree)
```

Arguments

```
multi_tree an object of class 'multiPhylo'
```

Details

Retrieves the member "tip.label" from each tree in multi_tree

Value

a list of the same length as 'multi_tree' with only the tip labels

Examples

```
mu <- 0.5
lambda <- 1.0
nt <- 6
tr <- sim_stBD(sbr = lambda, sdr = mu, numbsim = 5, n_tips = nt)
tips_of_tr <- get_tip_labels_tree_list(tr)</pre>
```

 $host_tree$

Print a cophylogenetic set

Description

Prints a cophylogenetic set or a list of cophylogenetic sets.

24 host_tree

Usage

```
host_tree(cophy)
## S3 method for class 'cophy'
host_tree(cophy)
## S3 method for class 'multiCophy'
host_tree(cophy)
symb_tree(cophy)
## S3 method for class 'cophy'
symb_tree(cophy)
## S3 method for class 'multiCophy'
symb_tree(cophy)
association_mat(cophy)
## S3 method for class 'cophy'
association_mat(cophy)
## S3 method for class 'multiCophy'
association_mat(cophy)
## S3 method for class 'multiCophy'
event_history(cophy)
## S3 method for class 'cophy'
print(x, ...)
## S3 method for class 'multiCophy'
print(x, details = FALSE, ...)
```

Arguments

cophy	An object of class 'cophy'
x	An object of class 'cophy' or class 'multiCophy'
	Further arguments used in generic classes
details	A logical value, outputs brief summary of each set in the list.

Details

The association matrix is output with symbionts in columns and hosts in rows. The event history data frame has codes for the following events: "CSP" = cospeciation/codivergence, "HSP" = host speciation, "HX" = host extinction, "SSP" = symbiont speciation, "SX" = Symbiont extinction, "DISP" = Symbiont dispersal, and "EXTP" = symbiont extirpation, "SHE" symbiont speciation with host spread or host switch.

host_tree 25

Value

Print returns NULL. host_tree returns NULL, symb_tree returns NULL, association_mat returns the dimensions of the matrix, event_history returns NULL.

Functions

- host_tree: Returns host tree of a cophylogenetic set
- host_tree.cophy: Returns host tree of a cophylogenetic set
- host_tree.multiCophy: Returns host tree of each member of a list of cophylogenetic sets
- symb_tree: Returns symb tree of a cophylogenetic set
- symb_tree.cophy: Returns symb tree of a cophylogenetic set
- symb_tree.multiCophy: Returns symb tree of each member of a list of cophylogenetic sets
- association_mat: Returns association matrix of a cophylogenetic set
- association_mat.cophy: Returns association matrix of a cophylogenetic set
- association_mat.multiCophy: Returns association matrix for each member of a list of cophylogenetic sets
- event_history.multiCophy: Returns event_history for each member of a list of cophylogenetic sets
- print.multiCophy: Prints a list of cophylogenetic sets

Author(s)

Wade Dismukes, Ben Bolker, and Emmanuel Paradis

See Also

sim_cophylo_bdp, print for the generic, multiCophy, c.cophy

```
h_lambda <- 1.0
h_mu <- 0.3
c_lambda <- 0.0
s_{lambda} < -1.0
s_mu <- 0.3
s_her <- 0.0
host_symb_sets <- sim_cophylo_bdp(hbr = h_lambda,</pre>
                                   hdr = h_mu,
                                   sbr = s_lambda,
                                   cosp_rate = c_lambda,
                                   sdr = s_mu,
                                   host_exp_rate = s_her,
                                   time_to_sim = 1.0,
                                   numbsim = 4)
print(host_symb_sets[[1]])
host_tree(host_symb_sets[[1]])
symb_tree(host_symb_sets[[1]])
```

is.cophy

```
association_mat(host_symb_sets[[1]])
event_history(host_symb_sets[[1]])
print(host_symb_sets)
```

is.cophy

Test for the cophygenetic set object

Description

Tests if an object is of class 'cophy'

Usage

```
is.cophy(cophy)
is.multiCophylo(multiCophy)
```

Arguments

cophy an object to test to see if it is of class 'cophy' multiCophy an object to test for multiCophy

Details

Checks that an object is of class 'cophy'. For multicophy checks that the class is 'multiCophylo' and that each element is of class 'cophy'.

Value

A logical vector

Functions

• is.multiCophylo: Tests for 'multiCophylo' composed of 'cophy' objects

See Also

as.cophy

```
h_lambda <- 1.0
h_mu <- 0.3
c_lambda <- 0.0
s_lambda <- 1.0
s_mu <- 0.3
s_her <- 0.0
host_symb_sets <- sim_cophyBD(hbr = h_lambda, hdr = h_mu,</pre>
```

is_extinct 27

is_extinct

Identify extinct tips from tree

Description

This is a direct port of the geiger function, I import it here for convenience. This code is copied under GPL 3 license.

Usage

```
is_extinct(phy, tol = NULL)
```

Arguments

phy a 'phylo' class object

tol tolerance in decimal values for branch lengths

Value

A list of the tips that are extinct

References

Pennell M, Eastman J, Slater G, Brown J, Uyeda J, Fitzjohn R, Alfaro M, Harmon L (2014). "geiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees." Bioinformatics, 30, 2216-2218

28 make_textbox

```
n_tips = numb_extant_tips)
is_extinct(tree_list[[1]])
```

make_textbox

Internal tree plot function

Description

internal function to make textbox for tip labels modified from phytools::TEXTBOX package under GPL v. 2

Usage

```
make_textbox(x, y, label, pos, offset, cex, font)
```

Arguments

x x coordinates

y y coordinates

label Labels as vector of strings

pos Position in plot environment

offset How offset from tips

cex a numerical vector giving the amount by which characters should be scaled relative to the default

font font choice

Author(s)

Wade Dismukes and Liam J Revell

References

Revell, L.J. (2012), phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3: 217-223. doi:10.1111/j.2041-210X.2011.00169.x

parafit_stat 29

parafit_stat	Calculate the ParafitGlobal statistic on 2 trees and their association matrix
--------------	---

Description

Calculate the ParafitGlobal Statistic to be used in the hypothesis test described in Legendre et al. (2002). The null hypothesis of this test being that the evolution of the two trees together with their associations at the present have been independent.

Usage

```
parafit_stat(host_tr, symb_tr, assoc_mat)
parafit_test(host_tr, symb_tr, assoc_mat, D, reps = 99)
```

Arguments

host_tr	The host tree of class "phy"
symb_tr	The symbiont tree of class "phy
assoc_mat	Association matrix between the extant tips of 'host_tr' and 'symb_tr'
D	the statistic calculated using 'parafit_stat'
reps	Number of permutations to perform on the association matrix for the hypothesis

Details

'parafit_stat' drops any non-extant tips from the tree. Then the phylogenetic distance matrix is obtained for both host and symbiont tree. Next the principal coordinates are found for the host and symbiont distance matrices before these PCoA vectors are used in the following matrix multiplication following Legendre et al. (2002): D = H t(A) A. The trace is then found of this to get our ParaFitGlobal Statistic.

The test function 'parafit_test' performs a row-wise permutation of the association matrix as described in Legendre et al. 2002. This is performed a number of times set by the user (default is 999) and a p-value is output.

The value from this is input into the test function. Note that this gives only the raw statistic unlike 'ape::parafit'. That is the only reason it is implemented here in treeducken (similar to 'treeducken::cherries').

Value

A p-value for the hypothesis test described above

test

Functions

• parafit_test: Perform ParaFit Hypothesis Test

30 plot.cophy

References

Legendre, P., Y. Desdevises and E. Bazin. 2002. A statistical test for host-parasite coevolution. Systematic Biology, 51(2), 217–234.

See Also

```
parafit_test
```

Examples

plot.cophy

Plot host and symbiont pair with current associations

Description

This function plots a host and symbiont tree given the object returned by 'sim_cophyBD'.

Usage

```
## S3 method for class 'cophy'
plot(
    x,
    use_edge_length = TRUE,
    type = "phylogram",
    col = par("fg"),
    lwd = par("lwd"),
    lty = par("lty"),
    show_tip_label = TRUE,
    gap = 1,
    font = 3,
    fsize = 1,
    show_div_bar = FALSE,
```

plot.cophy 31

```
## S3 method for class 'multiCophy'
plot(x, ...)
```

Arguments

x object of class multiCophy
use_edge_length
Boolean to draw trees with edge length or not
type string "phylogram" or "cladogram"
col What color to draw links between trees
lwd Width of links between trees
lty Type of line to draw between trees
show_tip_label Boolean for showing labels
gap Size of the gap between the tips and tip names

font What font to use (bold, italic (default), etc.)

fsize What size font as a character expansion factor (same as cex)

show_div_bar Shows a bar under both trees with ticks where the divergences are (default: F)

... other plotting parameters

Details

This function is mostly an altered version of the cophyloplot function written by Damien de Vienne Copyright 2008 - 2010 under GPL.

Value

a plot of the host and symbiont tree with extant interactions

Functions

• plot.multiCophy: Plots multiple cophy plots

Author(s)

Wade Dismukes and Damien de Vienne

```
host_mu <- 1.0 # death rate
host_lambda <- 2.0 # birth rate
numb_replicates <- 10
time <- 1.0
symb_mu <- 0.2
symb_lambda <- 0.4</pre>
```

retrieve_parent_genetrees

Retrieve all gene trees of the parent tree from a list generated from sim_mlc

Description

Retrieve all gene trees of the parent tree from a list generated from sim_mlc Retrieves the gene trees of the child subtrees

Usage

```
retrieve_parent_genetrees(gene_tree_list)
get_parent_gts(gene_tree_list)
retrieve_child_genetrees(gene_tree_list)
get_child_gts(gene_tree_list)
```

Arguments

gene_tree_list A list of length 2: "parent_tree" and "child_trees" both of which are of class "multiPhylo"

Value

A 'multiPhylo' object of only the gene trees generated on the parent subtree

Functions

• retrieve_child_genetrees: Returns a list of objects of class 'multiPhylo'

sim_cophyBD 33

Examples

```
#' # first simulate a species tree
mu <- 0.5
lambda <- 1.0
nt <- 6
tr <- sim_stBD(sbr = lambda, sdr = mu, numbsim = 1, n_tips = nt)</pre>
# for a locus tree with 100 genes sampled per locus tree
gene_br <- 0.1
gene_dr <- 0.02
transfer_rate <- 0.2
locus_tree <- sim_ltBD(species_tree = tr[[1]],</pre>
                   gbr = gene_br,
                   gdr = gene_dr,
                   lgtr = transfer_rate,
                   num_loci = 1)
effect_popsize <- 1e6
gene_tree_obj <- sim_mlc(locus_tree[[1]],</pre>
                                        effect_popsize,
                                        num\_reps = 2)
parent_trees <- retrieve_parent_genetrees(gene_tree_obj)</pre>
```

sim_cophyBD

Simulates a host-symbiont system using a cophylogenetic birth-death process

Description

Simulates a host-symbiont system using a cophylogenetic birth-death process

Usage

```
sim_cophyBD(
 hbr,
 hdr,
  sbr,
  sdr,
 host_exp_rate,
  cosp_rate,
  time_to_sim,
  numbsim,
 host_limit = 0L,
 hs\_mode = FALSE
)
sim_cophylo_bdp(
 hbr,
 hdr,
  sbr,
```

34 sim_cophyBD

```
sdr,
host_exp_rate,
cosp_rate,
time_to_sim,
numbsim,
host_limit = 0
```

Arguments

hbr host tree birth rate hdr host tree death rate symbiont tree birth rate sbr sdr symbiont tree death rate host_exp_rate host shift speciation rate cospeciation rate cosp_rate time_to_sim time units to simulate until numbsim number of replicates

Maximum number of hosts for symbionts (0 implies no limit)

Boolean turning host expansion into host switching (explained above) (default

= FALSE)

host_limit

hs_mode

Details

Simulates a cophylogenetic system using birth-death processes. The host tree is simulated following a constant rate birth-death process with an additional parameter - the cospeciation rate. This rate works as the speciation rate with the additional effect that if cospeciation occurs the symbiont tree also speciates. The symbiont tree is related to the host tree via an association matrix that describes which lineages are associated with which. The symbiont tree has an independent birth-death process with the addition of a host shift speciation rate that allows for the addition of more associated hosts upon symbiont speciation.

Host expansions are similar to the more commonly found host switching. In this model, host-expansion speciation describes events where a symbiont speciates and at that time, both descendants retain the ancestral host associations. Randomly one of these descendant symbionts then randomly acquires a new host. When the option 'host_switch_mode = TRUE', the behavior of this changes to a more traditional host switching where one descendant retains the ancestral range and the other gains a novel host association.

Value

A list containing the 'host_tree', the 'symbiont_tree', the association matrix in the present, with hosts as rows and smybionts as columns, and the history of events that have occurred.

sim_cophyBD_ana 35

Examples

```
host_mu <- 0.5 # death rate
host_lambda <- 2.0 # birth rate</pre>
numb_replicates <- 10</pre>
time <- 1.0
symb_mu <- 0.2
symb_lambda <- 0.4
host_shift_rate <- 0.0</pre>
cosp_rate <- 2.0
cophylo_pair <- sim_cophyBD(hbr = host_lambda,</pre>
                             hdr = host_mu,
                             cosp_rate = cosp_rate,
                             host_exp_rate = host_shift_rate,
                             sdr = symb_mu,
                             sbr = symb_lambda,
                             numbsim = numb_replicates,
                             time_to_sim = time)
```

sim_cophyBD_ana

Simulates a host-symbiont system using a cophylogenetic birth-death process

Description

Simulates a host-symbiont system using a cophylogenetic birth-death process

Usage

```
sim_cophyBD_ana(
 hbr,
 hdr,
  sbr,
 sdr,
 s_disp_r,
  s_extp_r,
 host_exp_rate,
  cosp_rate,
  time_to_sim,
  numbsim,
 host_limit = 0L,
 hs_mode = FALSE
)
sim_cophylo_bdp_ana(
 hbr,
```

36 sim_cophyBD_ana

```
hdr,
sbr,
sdr,
s_disp_r,
s_extp_r,
host_exp_rate,
cosp_rate,
time_to_sim,
numbsim,
host_limit = 0
```

Arguments

hbr host tree birth rate
hdr host tree death rate
sbr symbiont tree birth rate
sdr symbiont tree death rate

s_disp_r symbiont dispersal rate to new hosts

s_extp_r symbiont exirpation rate on h

host_exp_rate host shift speciation rate

cosp_rate cospeciation rate

time_to_sim time units to simulate until

numbsim number of replicates

host_limit Maximum number of hosts for symbionts (0 implies no limit)

hs_mode Boolean turning host expansion into host switching (explained above) (default

= FALSE)

Details

Simulates a cophylogenetic system using birth-death processes with anagenetic processes allowing symbiont to gain or loss associations with hosts. The host tree is simulated following a constant rate birth-death process with an additional parameter - the cospeciation rate. This rate works as the speciation rate with the additional effect that if cospeciation occurs the symbiont tree also speciates. The symbiont tree is related to the host tree via an association matrix that describes which lineages are associated with which. The symbiont tree has an independent birth-death process with the addition of a host shift speciation rate that allows for the addition of more associated hosts upon symbiont speciation. The anagenetic processes are modeled using a poisson process occurring along the tree. The dispersal to hosts is at present random; there is no preferential host expansion.

Host expansions are similar to the more commonly found host switching. In this model, host-expansion speciation describes events where a symbiont speciates and at that time, both descendants retain the ancestral host associations. Randomly one of these descendant symbionts then randomly acquires a new host. When the option 'host_switch_mode = TRUE', the behavior of this changes to a more traditional host switching where one descendant retains the ancestral range and the other gains a novel host association.

sim_ltBD 37

Value

A list containing the 'host_tree', the 'symbiont_tree', the association matrix in the present, with hosts as rows and smybionts as columns, and the history of events that have occurred.

Examples

```
host_mu <- 0.5 # death rate
host_lambda <- 2.0 # birth rate</pre>
numb_replicates <- 10</pre>
time <- 1.0
symb_mu <- 0.2
symb_lambda <- 0.4
host_shift_rate <- 0.0</pre>
cosp_rate <- 2.0
cophylo_pair <- sim_cophyBD_ana(hbr = host_lambda,</pre>
                             hdr = host_mu,
                             cosp_rate = cosp_rate,
                             s_disp_r = 1,
                             s_extp_r = 0.4,
                             host_exp_rate = host_shift_rate,
                             sdr = symb_mu,
                             sbr = symb_1ambda,
                             numbsim = numb_replicates,
                             time_to_sim = time)
```

sim_ltBD

Simulates locus tree using constant rate birth-death-transfer process

Description

Given a species tree simulates a locus or gene family tree along the species tree. Short for simulates a locus tree under a birth-death-transfer process.

Usage

```
sim_ltBD(species_tree, gbr, gdr, lgtr, num_loci, transfer_type = "random")
sim_locustree_bdp(
    species_tree,
    gbr,
    gdr,
    lgtr,
    num_loci,
    transfer_type = "random"
)
```

38 sim_ltBD

Arguments

species_tree species tree to simulate along
gbr gene birth rate
gdr gene death rate
lgtr gene transfer rate
num_loci number of locus trees to simulate
transfer_type The type of transfer input. Acceptable options: "cladewise" or "random"

Details

Given a species tree will perform a birth-death process coupled with transfer. The simulation runs along the species tree speciating and going extinct in addition to locus tree birth and deaths. Thus with parameters set to 0.0 a tree identical to the species tree is returned (it is relabel however).

Transfers are implemented as a birth-death process. One descendant lineage retains its species identity the other gains a new identity. At present, two types of transfers are implemented: "random" an "cladewise". The random transfer mode transfers one randomly chooses a contemporaneous lineage. Cladewise transfers choose lineages based on relatedness with more closely related lineages being more likely.

Value

List of objects of the tree class (as implemented in APE)

References

Rasmussen MD, Kellis M. Unified modeling of gene duplication, loss, and coalescence using a locus tree. Genome Res. 2012;22(4):755–765. doi:10.1101/gr.123901.111

```
# first simulate a species tree
mu <- 0.5 # death rate
lambda <- 2.0 # birth rate
numb_replicates <- 10</pre>
numb_extant_tips <- 4</pre>
# simulate trees under the GSA so first simulates a tree with
# numb_extant_tips * 100 tips counting each time we have a tree with 10 tips
# then randomly picks one of those trees
sp_tree <- sim_stBD(sbr = lambda,</pre>
                sdr = mu,
                numbsim = numb_replicates,
                n_tips = numb_extant_tips)
gene_br <- 1.0
gene_dr <- 0.2
transfer_rate <- 0.2
sim_ltBD(species_tree = sp_tree[[1]],
                  gbr = gene_br,
```

sim_msc 39

```
gdr = gene_dr,
lgtr = transfer_rate,
num_loci = 10)
```

sim_msc

Simulate multispecies coalescent on a species tree

Description

Simulates the multispecies coalescent on a species tree.

Usage

```
sim_msc(
    species_tree,
    ne,
    num_sampled_individuals,
    num_genes,
    rescale = TRUE,
    mutation_rate = 1L,
    generation_time = 1L
)

sim_multispecies_coal(
    species_tree,
    ne,
    num_sampled_individuals,
    num_genes,
    rescale = TRUE,
    mutation_rate = 1
)
```

Arguments

```
species_tree input species tree of class "phylo"

ne Effective population size

num_sampled_individuals

number of individuals sampled within each lineage

num_genes number of genes to simulate within each locus

rescale Rescale the tree into coalescent units (otherwise assumes it is in those units)

mutation_rate The rate of mutation per generation

generation_time

The number of time units per generation
```

40 sim_multilocus_coal

Details

This a multispecies coalescent simulator with two usage options. The function can rescale the given tree into coalescent units given the 'mutation_rate', 'ne', and the 'generation_time'. These result in a tree with coalescent times in units of expected number of mutations per site. The generation_time parameter default is 1 time unit per generation if the units of the tree are in millions of years The mutation_rate parameter is by default set to 1 mutations per site per generation (which is nonsensical). Rescale is set to true by default.

If rescale is set to false the tree is assumed to be in coalescent units and 'ne' is used as the population genetic parameter theta.

Value

A list of coalescent trees

References

Bruce Rannala and Ziheng Yang (2003) Bayes Estimation of Species Divergence Times and Ancestral Population Sizes Using DNA Sequences From Multiple Loci Genetics August 1, 2003 vol. 164 no. 4 1645-1656 Mallo D, de Oliveira Martins L, Posada D (2015) SimPhy: Phylogenomic Simulation of Gene, Locus and Species Trees. Syst. Biol. doi: http://dx.doi.org/10.1093/sysbio/syv082

See Also

```
sim ltBD, sim stBD, sim stBD t
```

Examples

sim_multilocus_coal

Simulates multi-locus coalescent on a given locus tree

Description

separates a locus tree into loci broken up by duplications and simulates the coalescent on each loci.

sim_multilocus_coal 41

Usage

```
sim_multilocus_coal(
  locus_tree,
  effective_pop_size,
  generation_time = 1,
  mutation_rate = 1e-06,
  num_reps
)

sim_mlc(
  locus_tree,
  effective_pop_size,
  generation_time = 1,
  mutation_rate = 1e-06,
  num_reps
)
```

Arguments

Details

This simulation follows the algorithm given in Rasmussen and Kellis 2012. The locus tree is scaled into coalescent units prior to being used. The generation_time parameter default assumes 1 generation per year if the units of the tree are in millions of years. The mutation_rate parameter is by default set to 1e-6 mutations per year (this is totally arbitrary). Also note that the return type is a list of many trees so for sufficiently complicated locus trees with 'num_reps' set to a larger value may slow things considerably so use with caution.

Value

A list of list of gene trees of length 'num_reps' simulated along each locus. The first member of the list is the parent tree, all others are child trees

```
# first simulate a species tree
mu <- 0.5
lambda <- 1.0
nt <- 6
tr <- sim_stBD(sbr = lambda, sdr = mu, numbsim = 1, n_tips = nt)</pre>
```

42 sim_stBD

sim_stBD

Simulates species trees using constant rate birth-death process

Description

Forward simulates to a number of tips. This function does so using the general algorithm of Hartmann et al. 2010. Short for simulate species tree under birth-death process.

Usage

```
sim_stBD(sbr, sdr, numbsim, n_tips, gsa_stop_mult = 10L)
sim_sptree_bdp(sbr, sdr, numbsim, n_tips, gsa_stop_mult = 10)
```

Arguments

```
sbr species birth rate (i.e. speciation rate)
sdr species death rate (i.e. extinction rate)
numbsim number of species trees to simulate
n_tips number of tips to simulate to
gsa_stop_mult number of tips to simulate the GSA tip to
```

Value

List of objects of the tree class (as implemented in APE)

References

```
K. Hartmann, D. Wong, T. Stadler. Sampling trees from evolutionary models. Syst. Biol., 59(4): 465-476, 2010.
```

T. Stadler. Simulating trees on a fixed number of extant species. Syst. Biol., 60: 676-684, 2011.

sim_stBD_t 43

Examples

 sim_stBD_t

Simulates species tree using constant rate birth-death process to a time

Description

Forward simulates a tree until a provided time is reached.

Usage

```
sim_stBD_t(sbr, sdr, numbsim, t)
sim_sptree_bdp_time(sbr, sdr, numbsim, t)
```

Arguments

sbr species birth rate (i.e. speciation rate)
sdr species death rate (i.e. extinction rate)
numbsim number of species trees to simulate

t time to simulate to

Value

List of objects of the tree class (as implemented in APE)

References

K. Hartmann, D. Wong, T. Stadler. Sampling trees from evolutionary models. Syst. Biol., 59(4): 465-476, 2010.

T. Stadler. Simulating trees on a fixed number of extant species. Syst. Biol., 60: 676-684, 2011.

str.multiCophy

Examples

str.multiCophy

Retrieve the structure of a class multiCophy

Description

Retrieves the structure of the class multiCophy

Usage

```
## S3 method for class 'multiCophy'
str(object, ...)
```

Arguments

object An object of class multiCophy
... Potential further arguments to generic str class

Value

NULL value

Index

```
* Internal
                                                event_history.multiCophy(host_tree), 23
    add_scalebar, 5
    draw_cophy, 15
                                                genetree_summary_stat, 21
                                                get_assoc
    draw_curve, 17
                                                        (build_historical_association_matrix),
    make_textbox, 28
* package
                                                get_child_gts
    treeducken-package, 3
                                                        (retrieve_parent_genetrees), 32
add_events, 3
                                                get_loci, 22
add_scalebar, 5
                                                get_parent_gts
association_mat(host_tree), 23
                                                        (retrieve_parent_genetrees), 32
ave_tips_lt
                                                get_tip_labels_tree_list, 23
        (calculate\_expected\_leaves\_locustree), \verb|get_tipnames||
                                                        (get_tip_labels_tree_list), 23
ave_tips_st
        (calculate_expected_leaves_sptree),
                                                host_tree, 23
                                                is.cophy, 26
build_historical_association_matrix, 5
                                                is.multiCophylo(is.cophy), 26
                                                is_extinct, 27
c.cophy, 6
c.multiCophy (c.cophy), 6
                                                make_mat
calculate_expected_leaves_locustree, 8
                                                        (convert_assoc_table_to_matrix),
calculate_expected_leaves_sptree, 9
collapse clade
                                                make_textbox, 28
        (collapse_locus_subtree), 10
collapse_locus_subtree, 10
                                                node_heights (estimate_node_heights), 18
convert_assoc_table_to_matrix, 11
                                                parafit_stat, 29
convert_to_cophy, 12
                                                parafit_test (parafit_stat), 29
cophy_summary_stat
                                                plot.cophy, 30
        (cophy_summary_stat_by_indx),
                                                plot.multiCophy (plot.cophy), 30
                                                print.cophy (host_tree), 23
cophy_summary_stat_by_indx, 13
                                                print.multiCophy (host_tree), 23
count_cherries, 14
                                                retrieve_child_genetrees
draw_cophy, 15
                                                        (retrieve_parent_genetrees), 32
draw_curve, 17
                                                retrieve_parent_genetrees, 32
drop_extinct, 17
estimate_node_heights, 18
                                                sim_cophyBD, 33
event_history, 19
                                                sim_cophyBD_ana, 35
```

46 INDEX

```
sim_cophylo_bdp (sim_cophyBD), 33
sim_cophylo_bdp_ana(sim_cophyBD_ana),
        35
sim_locustree_bdp (sim_ltBD), 37
sim_ltBD, 37
\verb|sim_mlc(sim_multilocus_coal)|, 40
sim_msc, 39
sim_multilocus_coal, 40
sim_multispecies_coal (sim_msc), 39
sim_sptree_bdp (sim_stBD), 42
sim_sptree_bdp_time(sim_stBD_t), 43
sim_stBD, 42
sim_stBD_t, 43
str.multiCophy, 44
summarize_1cophy
        (cophy_summary_stat_by_indx),
        13
summarize_cophy
        (cophy_summary_stat_by_indx),
summarize_gt (genetree_summary_stat), 21
summary.cophy (event_history), 19
symb_tree (host_tree), 23
to_cophy (convert_to_cophy), 12
treeducken (treeducken-package), 3
treeducken-package, 3
```