
Package ‘triact’
January 11, 2023

Type Package

Title Analyzing the Lying Behavior of Cows from Accelerometer Data

Version 0.2.0

Description Assists in analyzing the lying behavior of cows from raw data
recorded with a triaxial accelerometer attached to the hind leg of a cow. Allows
the determination of common measures for lying behavior including total lying duration, the
number of lying bouts, and the mean duration of lying bouts. Further capabilities are the
description of lying laterality and the calculation of proxies for the level of physical
activity of the cow. Reference: Simmler M., Brouwers S. (2023) <https:
//gitlab.com/AgroSimi/triact_manuscript>.

License GPL (>= 3)

Encoding UTF-8

LazyData true

Depends R (>= 4.1)

Imports R6 (>= 2.5.0), data.table (>= 1.14.0), parallel (>= 4.1.2),
checkmate (>= 2.0.0), lubridate (>= 1.7.10), methods, stats

Suggests signal (>= 0.7-7), tibble, rmarkdown, knitr

VignetteBuilder knitr

NeedsCompilation no

Author Michael Simmler [aut, cre] (<https://orcid.org/0000-0002-4095-4111>),
Stijn Brouwers [ctb] (<https://orcid.org/0000-0002-7028-7823>)

Maintainer Michael Simmler <michael.simmler@agroscope.admin.ch>

Repository CRAN

Date/Publication 2023-01-11 06:40:02 UTC

R topics documented:
bout_summary . 2
cows_5hz . 2
interval_summary . 3
Triact . 5

1

https://gitlab.com/AgroSimi/triact_manuscript
https://gitlab.com/AgroSimi/triact_manuscript
https://orcid.org/0000-0002-4095-4111
https://orcid.org/0000-0002-7028-7823

2 cows_5hz

Index 17

bout_summary Output of Triact$summarize_bouts()

Description

Output of Triact$summarize_bouts(). The information contained in the output table depends on the
analyses you added to the ’Triact’ object using the $add_activity(), $add_lying(), and $add_side()
methods.

The asterisk (*) in the column names below stands for one of ’L1’, ’L2’, ’AdjL1’, and ’AdjL2’.
DBA is the abbreviation for the dynamic body acceleration.

id Cow id

bout_nr Sequential numbering of the bouts per cow id

startTime Start time of the bout

endTime End time of the bout

duration Duration of the bout (units as specified via the duration_units argument)

lying TRUE for lying bouts, FALSE for standing bouts

side "L" for left lying side, "R" for right lying side (NA for standing bouts)

mean*DBA Mean of the DBA-based proxy for physical activity

mean*Jerk Mean of the Jerk-based proxy for physical activity

cows_5hz cow acceleration data

Description

Data collected with a triaxial accelerometers (MSR145, MSR Electronics, Switzerland) attached to
the left hind leg of two dairy cows (cow01, cow02). The accelerometer sampling frequency was 5
Hz.

colname type description
id Factor unique id for the cow
time POSIXct timestamp
acc_fwd numeric acceleration from forward axis (units: g)
acc_up numeric acceleration from up axis (units: g)
acc_right numeric acceleration from right axis (units: g)

Usage

cows_5hz

../../triact/html/Triact.html#method-summarize_bouts

interval_summary 3

Note

From the raw data files distributed with the triact package, cows_5hz can be reproduced as follows:

create a Triact object
my_triact <- Triact$new()

dir <- system.file("extdata", package = "triact")

my_triact$load_files(input = dir,
id_substring = c(1, 5),
timeFwdUpRight_cols = c(1, 2 ,3, 4),
skip = "*DATA")

cows_5hz_recreated <- my_triact$data

test whether they are identical
identical(cows_5hz_recreated, cows_5hz)

Source

Agroscope, 8356 Ettenhausen, Switzerland

interval_summary Output of Triact$summarize_intervals()

Description

Output of Triact$summarize_intervals(). The information contained in the output table depends
on the arguments bouts and side and on the analyses you added to the ’Triact’ object using the
$add_activity(), $add_lying(), and $add_side() methods.

The asterisk (*) in the column names below stands for one of ’L1’, ’L2’, ’AdjL1’, and ’AdjL2’.
DBA is the abbreviation for the dynamic body acceleration.

startTime: Start time of the interval

centerTime: Center time of the interval (convenient for plotting)

endTime: End time of the interval

duration: Duration of data recordings in the interval. Helpful for identifying incompletely observed
intervals at start and end of the recording. Units: As specified via the duration_units argument.

durationStanding: Duration in upright posture. Units: As specified via the duration_units
argument.

durationLying: Duration in lying posture. Units: As specified via the duration_units argument.

durationLyingLeft: Duration in lying posture with lying side left. Units: As specified via the
duration_units argument.

../../triact/html/Triact.html#method-summarize_intervals

4 interval_summary

durationLyingRight: Duration in lying posture with lying side right. Units: As specified via the
duration_units argument.

mean*DBA: Mean of the DBA-based proxy for physical activity. Units: g

mean*Jerk:Mean of the Jerk-based proxy for physical activity. Units: gs−1

mean*DBAStanding: Mean of the DBA-based proxy for physical activity when in upright posture.
Units: g

mean*JerkStanding: Mean of the Jerk-based proxy for physical activity when in upright posture.
Units: gs−1

mean*DBALying: Mean of the DBA-based proxy for physical activity when in lying posture.
Units: g

mean*JerkLying: Mean of the Jerk-based proxy for physical activity when in lying posture. Units:
gs−1

mean*DBALyingLeft: Mean of the DBA-based proxy for physical activity when in lying posture
with lying side left. Units: g

mean*JerkLyingLeft: Mean of the Jerk-based proxy for physical activity when in lying posture
with lying side left. Units: gs−1

mean*DBALyingRight: Mean of the DBA-based proxy for physical activity when in lying posture
with lying side right. Units: g

mean*JerkLyingRight: Mean of the Jerk-based proxy for physical activity when in lying posture
with lying side right. Units: gs−1

nBoutsStanding: Number of standing bouts (proportional if across intervals).

nBoutsLying: Number of lying bouts (proportional if across intervals).

nBoutsLyingLeft: Number of lying bouts with lying side left (proportional if across intervals).

nBoutsLyingRight: Number of lying bouts with lying side right (proportional if across intervals).

wMeanDurationStandingBout: Weighted-mean duration of standing bouts (weights are the pro-
portions of the individual bouts overlapping with the respective intervals). Units: As specified via
the duration_units argument.

wMeanDurationLyingBout: Weighted-mean duration of lying bouts (weights are the proportions
of the individual bouts overlapping with the respective intervals). Units: As specified via the
duration_units argument.

wMeanDurationLyingBoutLeft: Weighted-mean duration of lying bouts with lying side left (weights
are the proportions of the individual bouts overlapping with the respective intervals). Units: As
specified via the duration_units argument.

wMeanDurationLyingBoutRight: Weighted-mean duration of lying bouts with lying side right
(weights are the proportions of the individual bouts overlapping with the respective intervals).
Units: As specified via the duration_units argument.

Triact 5

Triact R6 class for analyzing accelerometer data from cows

Description

An object for containing and analyzing data from accelerometers attached to a hind leg of cows.
Analyses focus on the lying behaviour and on the cow’s level of physical activity as detailed in
Simmler & Brouwers (2023).

Active bindings

data Raw accelerometer data and analysis results. Mainly modified by $load_... and the $add_...
methods

Methods

Public methods:

• Triact$new()

• Triact$load_files()

• Triact$load_table()

• Triact$check_orientation()

• Triact$add_lying()

• Triact$add_side()

• Triact$add_activity()

• Triact$summarize_intervals()

• Triact$summarize_bouts()

• Triact$extract_liedown()

• Triact$extract_standup()

Method new(): Create a new triact object.

Usage:
Triact$new()

Returns: A new ‘Triact‘ object.

Examples:
create a Triact object
my_triact <- Triact$new()

Method load_files(): Import acceleration data files from one or several cows to the ’Tri-
act’ object. Importing multiple files from the same cows is possible but data should follow each
other without any gaps in time (overlap is allowed as duplicates after concatenation will be re-
moved). The filenames must allow unique identification of the cow (parameter: id_substring).
Accelerometer sampling frequency must be consistent across the files. Acceleration should be in

6 Triact

units of g. Triaxial, biaxial and uniaxial accelerometer data are allowed, but only triaxial data
corresponding to relative body directions allows full functionality.
Important: Make sure to correctly specify how to map the axes as named by the accelerometer
(e.g., x, y, z) to the body relative axes as used in triact (parameter: timeFwdUpRight_cols). See
Simmler & Brouwers (2023) for an illustration.

Usage:
Triact$load_files(

input,
id_substring,
timeFwdUpRight_cols = c(1, 2, 3, 4),
time_format = NULL,
tz = Sys.timezone(),
start_time = NULL,
end_time = NULL,
sep = "auto",
skip = "__auto__",
parallel = 1,
...

)

Arguments:

input Specifies the input acceleration data files. Character vector with the name(s) of the file(s)
or a directory containing the files (files can be in subdirectories). If it does not contain
absolute paths, the directory or file name(s) are relative to the current working directory,
getwd().

id_substring Integer vector identifying the substring of the file names representing the unique
identifier of the cows by character position: c(first, last), e.g, c(1, 5) for first to fifth char-
acter. Alternatively, a Perl-like regular expression matching the substring.

timeFwdUpRight_cols Integer vector specifying the columns containing the time, and the for-
ward, up, and right axis acceleration data: c(time, fwd, up, right). Missing acceleration
axes are specified as NA. A negative mathematical sign is used to indicate that the recorded
data reflects the opposite direction (e.g., for backward acceleration, specify the forward
acceleration column with a negative mathematical sign). Default: c(1, 2, 3, 4)

time_format Character vector specifying the date-time format corresponding to the acceler-
ation files (syntax as in strptime). If NULL a date-time format as tried by as.POSIX* is
expected. Default: NULL

tz Character vector specifying the time zone Default: Sys.timezone()
start_time Time from which on the data should be considered. Formatted as "%Y-%m-%d

%H:%M:%OS" or in another format automatically tried by as.POSIX*. Default: NULL
end_time Time up to which the data should be considered. Formatted as "%Y-%m-%d %H:%M:%OS"

or in another format automatically tried by as.POSIX*. Default: NULL
sep The separator between columns in the acceleration data files. If "auto", it is automatically

detected by data.table::fread. Default: "auto"
skip An integer indicating the number of lines to skip before reading data from the files. Al-

ternatively, a (sub)string indicating the line to start reading data, or "__auto__" for the au-
tomatic detection by data.table::fread.Default: "__auto__"

Triact 7

parallel An integer indicating the number of files that are read in parallel. For parallel >
1 the reading of the individual file is set to single-threaded to avoid nested parallelization.
This behavior can be overwritten by additionally passing nThread via ... argument, which
is passed on to data.table::fread. Default: 1

... Further arguments passed to data.table::fread.

Examples:
create a Triact object
my_triact <- Triact$new()

dir <- system.file("extdata", package = "triact")

my_triact$load_files(input = dir,
id_substring = c(1, 5),
timeFwdUpRight_cols = c(1, 2 ,3, 4),
skip = "*DATA")

inspect imported data
head(my_triact$data)

Method load_table(): Import acceleration data from a data.frame-like table (see cows_5hz as
an example). The table should contain the following columns:

colname type description
id Factor unique id for the cow
time POSIXct timestamp
acc_fwd numeric acceleration from forward axis (units: g)
acc_up numeric acceleration from up axis (units: g)
acc_right numeric acceleration from right axis (units: g)

The accelerometer sampling frequency must be the same across all cows (id). No time gaps are
allowed (within data of one id). One or two of the acceleration columns may be missing, but the
possible analyses are then limited.
Important: Make sure the accelerometer axes correctly represent body relative axes (forward, up,
right). See Simmler & Brouwers (2023) for an illustration.

Usage:
Triact$load_table(table)

Usage (alternative syntax):
Triact$data <- table

Arguments:
table Data frame-like table containing the data to import. Must follow the requirements de-

tailed in the description above.

Examples:

8 Triact

create a Triact object
my_triact <- Triact$new()

my_triact$load_table(cows_5hz)

inspect imported data
head(my_triact$data)

Method check_orientation(): Checks for each ID (unique identifier of the cow) whether the
accelerometer may have been unintentionally mounted 180° rotated in the sagittal plane to the
hind leg. If identified as such, the mathematical correction is applied, i.e. the forward and up
axes are negated (multiplied by -1), i.e. the axes are mathematically rotated in order to comply
with the orientation as specified when loading in the data. The check is sum(acc_up > crit) <
sum(acc_up < (-1 * crit)) with crit = 0.5 by default.

Usage:
Triact$check_orientation(crit = 0.5, interactive = TRUE)

Arguments:
crit Critical value used in the check according to the expression noted in the description above.

Default: 0.5
interactive A logical value that indicates whether the function should interactively prompts

the user before applying the correction. Default: TRUE

Examples:
create a Triact object
my_triact <- Triact$new()

my_triact$load_table(cows_5hz)

my_triact$check_orientation()

Method add_lying(): Classify data into lying and standing and add results as column ’lying’
to the ‘Triact’ object. Additionally, bouts (lying and standing) are uniquely numbered in column
’bout_id’. The simple rule-based algorithm is composed of three steps: In the first step, the
up acceleration is filtered to obtain the gravity component of the signal. In the second step, a
threshold is used to classify the filtered acceleration values into lying and standing. Finally, in the
third step, lying bouts shorter than a given minimum duration are reclassified as standing. The
last step can be performed analogous for standing bouts, but is not recommended by default. See
Simmler & Brouwers (2023) for a detailed discussion.

Usage:
Triact$add_lying(

filter_method = "median",
crit_lie = 0.5,
minimum_duration_lying = 30,
minimum_duration_standing = NULL,
add_filtered = FALSE,
...)

Triact 9

Arguments:

filter_method Filter method to be applied to obtain the gravity component of the acceleration
on the up axis. Options are "median", for median filter, and "butter" for a bidirectional (zero-
lag) Butterworth low-pass filter. Settings to the respective filter methods can be passed via
the ’...’ argument (see below). Default: "median"

crit_lie Up-acceleration threshold for classifying into lying and standing. Default: 0.5
minimum_duration_lying Minimum duration for lying bouts in seconds. Lying bouts shorter

than this threshold are considered false and reclassified as standing. Default: 30
minimum_duration_standing Minimum duration for standing bouts in seconds. Standing

bouts shorter than this threshold are considered false and reclassified as lying. Default:
NULL

add_filtered Logical value that indicates whether the filtered gravity component of the up
acceleration should be added to the ’Triact’ object. Default: FALSE

... Further arguments passed to the corresponding filter method as specified with the filter_method
argument. For filter method ’median’ the argument window_size specifies the window size
in seconds (default: 10). For filter method ’butter’ the argument cutoff specifies the cutoff
frequency for low-pass filtering in Hz (default: 0.1) and the argument order specifies the
Butterworth filter order (default: 1).

Examples:
create a Triact object
my_triact <- Triact$new()

my_triact$load_table(cows_5hz)

my_triact$add_lying()

inspect result
head(my_triact$data)

Method add_side(): Classify lying bouts into left and right lying side and add results as column
’side’ to the ’Triact’ object. For each lying bout, the median acceleration over the entire duration
is calculated and compared to a threshold to classify the bout as ’L’ (left) or ’R’ (right) lying side.
See Simmler & Brouwers (2023) for details.

Usage:
Triact$add_side(left_leg, crit_left = if(left_leg) -0.5 else 0.5)

Arguments:

left_leg Logical indicating whether the accelerometers were attached to the left hind leg
(TRUE) or to the right hind leg (FALSE). This information is used to choose the default value
for crit_left. It is ignored if crit_left is specified by the user.

crit_left Right-acceleration threshold for classifying lying on left versus right side. Default:
-0.5 if left_leg is TRUE, else 0.5

Examples:
create a Triact object
my_triact <- Triact$new()

10 Triact

my_triact$load_table(cows_5hz)

my_triact$add_lying()

my_triact$add_side(left_leg = TRUE)

inspect result
head(my_triact$data)

Method add_activity(): Calculate proxies for the physical activity level. By default, the L2
norm of the dynamic body acceleration (DBA) vector is calculated. The corresponding L1 norm
is optionally available. Also, the L1 and L2 norms of the jerk vector can be calculated. By default,
all activity values during lying bouts are ’adjusted’ to zero, i.e., periods when cows are lying are
considered as ’inactive’ by definition. See Simmler & Brouwers (2023) for details.

Usage:
Triact$add_activity(

dynamic_measure = "dba",
norm = "L2",
adjust = TRUE,
filter_method = "median",
keep_dynamic_measure = FALSE,
...)

Arguments:
dynamic_measure Type of dynamic measure to base the activity proxy on. Options are "dba",

for dynamic body acceleration, and "jerk", for the jerk vector. One or both can be pro-
vided, e.g., "dba" or c("dba", "jerk"). Default: "dba"

norm The type of norm to be calculated. Options are "L1" and "L2". One or both can be
provided, e.g., "L1" or c("L1", "L2"). Default: "L2"

adjust A logical value that indicates whether the proxies for physical activity should be ’ad-
justed’ to 0 during lying bouts, i.e., whether cows should be considered as inactive by
definition when lying. Default: TRUE

filter_method Filter method to be used to determine the gravity component subtracted from
the raw acceleration to obtain the dynamic body acceleration. Options are "median", for
median filter, and "butter" for a bidirectional (zero-lag) Butterworth low-pass filter. Settings
to the respective filter methods can be passed via the ’...’ argument (see below). Default:
"median"

keep_dynamic_measure A logical value that indicates whether the intermediate data, being
the dynamic body acceleration vector and/or the jerk vector, should be added to the ’Triact’
object. Default: FALSE

... Further arguments passed to the corresponding filter method as specified with the filter_method
argument. For filter method ’median’ the argument window_size specifies the window size
in seconds (default: 10). For filter method ’butter’ the argument cutoff specifies the cut-
off frequency for low-pass filtering in Hz (default: 0.1) and argument order specifies the
Butterworth filter order (default: 1).

Examples:

Triact 11

create a Triact object
my_triact <- Triact$new()

my_triact$load_table(cows_5hz)

my_triact$add_lying()

my_triact$add_activity()

inspect result
head(my_triact$data)

Method summarize_intervals(): Summarizes the data in the ’Triact’ object, activity and lying
behaviour, by regular intervals. The information contained in the output table depends on the
analyses you added to the ’Triact’ object using the $add_activity(), $add_lying(), and $add_side()
methods. With bout = TRUE information on bouts per interval (number and mean bout duration)
will be returned additionally. With side = TRUE summarized information such lying duration is
additionally provided separately for the lying side (left/right). For measures such as the number
of lying bouts or mean lying bout duration, a weighted mean (’wMean...’) is calculated with the
weights being the proportion of the individual bout overlapping with the respective interval. See
Simmler & Brouwers (2023) for details.

Usage:
Triact$summarize_intervals(

interval = "hour",
lag_in_s = 0,
duration_units = "mins",
bouts = FALSE,
side = FALSE,
calc_for_incomplete = FALSE)

Arguments:

interval Character string specifying the intervals to be analyzed. Any unique English abbre-
viation valid for the ’unit’ argument of lubridate::floor_date is allowed, e.g., "hour",
"min", "10 mins", and "0.5 hours". Default: "hour"

lag_in_s Lag in seconds with respect to the full hour or full day. Default: 0
duration_units Unit in which durations should be returned. Options are "secs", "mins" and

"hours". Default: "mins"
bouts Logical indicating whether information on bouts should be additionally summarized.

Default: FALSE
side Logical indicating whether lying side should be considered in the summary. Default:

FALSE

calc_for_incomplete Logical indicating whether a complete summary should also be re-
turned for the incompletely observed intervals (first and last interval for each cow) and
for any parameter using information of incompletely observed bouts (first and last bout for
each cow). Please note that these are ill-defined. Default: FALSE

Returns: A table with summaries by interval (rows). See interval_summary for a complete list.

12 Triact

Examples:
create a Triact object
my_triact <- Triact$new()

my_triact$load_table(cows_5hz)

my_triact$add_lying()

int_summary <- my_triact$summarize_intervals()

inspect result
head(int_summary)

Method summarize_bouts(): Summarizes the data in the ’Triact’ object, activity and lying
behaviour, by lying/standing bouts. The information contained in the output table depends on the
analyses you added to the ’Triact’ object using the $add_activity(), $add_lying(), and $add_side()
methods.

Usage:
Triact$summarize_bouts(

bout_type = "both",
duration_units = "mins",
calc_for_incomplete = FALSE)

Arguments:
bout_type Type of bout to be considered. Options are "both", "lying", and "standing".

Default: "both"
duration_units Units in which durations should be returned. Options are "secs", "mins",

and "hours". Default: "mins"
calc_for_incomplete Logical indicating whether a complete summary should also be re-

turned for the incompletely observed bouts (first and last bout for each cow). Please note
that these are ill-defined. Default: FALSE

Returns: A table with summaries by bout (rows). See bout_summary for a complete list.
Examples:
create a Triact object
my_triact <- Triact$new()

my_triact$load_table(cows_5hz)

my_triact$add_lying()

bouts_summary <- my_triact$summarize_bouts()

inspect result
head(bouts_summary)

Method extract_liedown(): Extracts data associated with liedown events (standing-to-lying
transitions). Operates in two modes, see Returns section.

Triact 13

Usage:
Triact$extract_liedown(sec_before = 0, sec_after = 0)

Arguments:
sec_before From how many seconds before the liedown events data should be considered.

Default: 0
sec_after Until how many seconds after the liedown events data should be considered. De-

fault: 0

Returns: With default settings, a table with one entry per liedown event, with timestamp
and bout_id of the lying bout, plus lying side information (if available). With parameters
sec_before and/or sec_after > 0, a list containing individual tables per liedown event. These
tables are extracts of all data in the ’Triact’ object from within the defined time window around
the liedown events.

Examples:
create a Triact object
my_triact <- Triact$new()

my_triact$load_table(cows_5hz)

my_triact$add_lying()

l_downs <- my_triact$extract_liedown()

inspect result
print(l_downs)

Method extract_standup(): Extracts data associated with standup events (lying-to-standing
transitions). Operates in two modes, see Returns section.

Usage:
Triact$extract_standup(sec_before = 0, sec_after = 0)

Arguments:
sec_before From how many seconds before the standup events data should be considered.

Default: 0
sec_after Until how many seconds after the standup events data should be considered. De-

fault: 0

Returns: With default settings, a table with one entry per standup event, with timestamp
and bout_id of the lying bout, plus lying side information (if available). With parameters
sec_before and/or sec_after > 0, a list containing individual tables per standup event. These
tables are extracts of all data in the ’Triact’ object from within the defined time window around
the standup events.

Examples:
create a Triact object
my_triact <- Triact$new()

my_triact$load_table(cows_5hz)

14 Triact

my_triact$add_lying()

st_ups <- my_triact$extract_standup()

inspect result
print(st_ups)

References

Simmler. M., Brouwers S., 2023. Triact package for R: Analyzing the lying behavior of cows from
accelerometer data. pdf

Examples

Please read the "introduction" vignette for more detailed examples

method '$new'

create a Triact object
my_triact <- Triact$new()

method '$load_files'

create a Triact object
my_triact <- Triact$new()

dir <- system.file("extdata", package = "triact")

my_triact$load_files(input = dir,
id_substring = c(1, 5),
timeFwdUpRight_cols = c(1, 2 ,3, 4),
skip = "*DATA")

inspect imported data
head(my_triact$data)

method 'load_table'

create a Triact object
my_triact <- Triact$new()

https://gitlab.com/AgroSimi/triact_manuscript

Triact 15

my_triact$load_table(cows_5hz)

inspect imported data
head(my_triact$data)

method 'check_orientation'

my_triact$check_orientation()

method 'add_lying'

my_triact$add_lying()

inspect result
head(my_triact$data)

method 'add_side'

my_triact$add_side(left_leg = TRUE)

inspect result
head(my_triact$data)

method 'add_activity'

my_triact$add_activity()

inspect result
head(my_triact$data)

method 'summarize_intervals'

int_summary <- my_triact$summarize_intervals()

inspect result
head(int_summary)

method 'summarize_bouts'

bouts_summary <- my_triact$summarize_bouts()

16 Triact

inspect result
head(bouts_summary)

method 'extract_liedown'

l_downs <- my_triact$extract_liedown()

inspect result
print(l_downs)

method 'extract_standup'

st_ups <- my_triact$extract_standup()

inspect result
print(st_ups)

Index

as.POSIX*, 6

bout_summary, 2, 12

cows_5hz, 2, 7

data.table::fread, 6, 7

interval_summary, 3, 11

lubridate::floor_date, 11

regular expression, 6

strptime, 6

time zone, 6
Triact, 5

17

	bout_summary
	cows_5hz
	interval_summary
	Triact
	Index

