Package ‘utilities’

October 12, 2022

Type Package

Title Data Utility Functions
Version 0.6.1

Date 2022-06-30

Author Ben O'Neill [aut, cre]

Maintainer Ben O'Neill <ben.oneill@hotmail.com>

URL https://github.com/ben-oneill/utilities/

Description Data utility functions for use in probability and statistics. Includes functions for comput-
ing higher-moments for samples and their decompositions.
Also includes utilities to examine functional mappings between factor variables and other vari-
ables in a data set.

License MIT + file LICENSE
Encoding UTF-8
Imports stats

Suggests ggplot2, ggdag (>= 0.2.4), gmp, gridExtra, matrixStats,
scales, VGAM

RoxygenNote 7.2.0

NeedsCompilation no

Repository CRAN

Date/Publication 2022-07-01 06:20:02 UTC

R topics documented:

printdataframe Lo L L 2
datasets.Str. 3
KDE . . . 4
KDE utils 5
kurtosiso e e e e 6
log . . o e 7
MAPPINGS « « o v v v e e e e e e e e e e e e e 8

https://github.com/ben-oneill/utilities/

2 .print.data.frame
MOMENTS o v vttt et e e e e e e e 9
nIMProb L e e e 11
PED . . . 13
plot.datamappings 14
QUEUC . o o v e e e e e e e e e e e e e e 15
0 TR 1 17
sample.all L e 18
sample.decomp e 18
SKEWNESS . . . oL e e e e 20
SOftmax 21
tailplot L L 22
ZIpIPlOt . . . e e 23

Index 25

.print.data.frame Print a Data-Frame (allowing column/row separators)
Description

Custom print method for objects of type data.frame. This function prints the data-frame in the
same way as the default print.data.frame in the base package, except that it allows the user to add
textual column/row separators in the print output in specified positions. To do this the user adds
row/column values for the inputs row. separator and col.separator indicating that separators
should be added after those rows/columns. The user can also set sep.extend to TRUE to extend the
separators into the row/column-names.

Usage

.print.data. frame(
row.separator = NULL,
col.separator = NULL,
sep.extend = FALSE,
print.gap = 1,
digits = NULL,
quote = FALSE,
right = TRUE,
row.names = TRUE,
max = NULL

)

Arguments

X A data-frame (object of class data. frame)

optional arguments to print or plot methods

row.separator A vector of values of rows (adds separators after those rows)

datasets.str 3

col.separator A vector of values of columns (adds separators after those columns)

sep.extend Logical value; if TRUE the separators are extended into the row/column-names

print.gap A non-negative integer specifyig the number of spaces between columns

digits the minimum number of significant digits to be used: see print.default

quote Logical value; if TRUE entries are printed with surrounding quotes

right Logical value; if TRUE strings are right-aligned

row.names Logical value or character vector; indicating whether (or what) row names are
printed

max numeric or NULL, specifying the maximal number of entries to be printed. By

default, when NULL, getOption("max.print") used

Value

Prints the data frame with the specified column/row separators

datasets.str Structure of Available Datasets

Description

datasets.str returns the structure of available datasets

Usage
datasets.str(package = NULL)

Arguments

package The package/packages containing the datasets of interest

Details

Datasets are often available in packages loaded into R and it is useful to know the structure of these
datasets. This function shows the user the strucure of all available datasets in a specified package
or packages. (If the user does not specify a package) then the function searches over all available
packages.

Value

A data frame listing available data sets, invisibly

Examples

datasets.str("datasets”)

KDE

KDE

Kernel Density Estimator

Description

KDE returns the probability function for the kernel density estimator

Usage

KDE(
data,

weights = NULL,
bandwidth = NULL,

df = Inf,
density.name = "kde",
value.name = "Value”,

discrete = FALSE,

discrete.warn

= TRUE,

to.environment = FALSE,

envir = .GlobalEnv
)
Arguments
data Input data for the kernel density estimator (a numeric vector)
weights Weights for the kernel density estimator (a numeric vector with the same length
as the data)
bandwidth Bandwidth for the KDE; if NULL it is estimated
df Degrees-of-freedom for the T-distribution

density.name

value.name
discrete

discrete.warn

to.environment

envir

Details

Name of the KDE distribution; used for naming of the probability functions (a
character string)

Name of the values in the data; used for naming the plot of the KDE
Logical; if TRUE the function produces a discrete KDE over the integers

Logical; if TRUE the function gives a warning if non-discrete data is used to
produce a discrete KDE

Logical; if TRUE the probability functions are attached to the global environment

The environment where the probability functions are loaded (if to.environment
is TRUE)

The kernel density estimator for a set of input data is obtained by taking a mixture distribution
consisting of a (possibly weighted) combination of kernels. In this function we compute the KDE
using the kernel of the T-distribution; the function can also estimate a discretised version of the KDE

KDE _utils 5

(taken over the integers) if required. The degrees-of-freedom and the bandwidth for the KDE can be
specified in the inputs; if the bandwidth is not specified then it are estimated using the methods set
out in Sheather and Jones (1991) used in the stats: :density function. The output of the function
is a list of class kde that contains the probability functions for the KDE and associated information.
The output object can be plotted to show the density function for the KDE.

Note: The function has an option to.environment to allow the user to load the probability func-
tions to the global environment or another specified environment. If this is set to TRUE then the
probability functions are loaded to the specified environment in addition to appearing as elements
of the output; there is a message informing the user if existing objects in the global environment
were overwritten. If the functions are not loaded to the environment then the user can use the
function KDE . 1load to load them later from the produced object.

Value

A kde object containing the probability functions for the kernel density estimator

Examples

k <- KDE(rnorm(500))

print(k)

plot(k)

KDE.load(k, environment()); 1ls()

KDE_utils Utilities for KDE fits

Description

Utilities for KDE fits

KDE . load copies KDE distribution functions from a KDE object to a target environment.
print.kde prints the KDE object and returns it invisibly.

plot.kde draws a plot of the KDE.

Usage

KDE.load(object, envir = NULL, overwrite = TRUE)

S3 method for class 'kde'
print(x, digits =6, ...)

S3 method for class 'kde'
plot(

X,

digits = 6,

n =512,

cut = 4,

6 kurtosis
fill.colour = "dodgerblue”,
fill.color = fill.colour,
)
Arguments
object, x A KDE object
envir The target environment
overwrite If FALSE, aborts if the function names are already present in the target environ-
ment
digits Number of digits to print
unused
n number of bins
cut cutoffs for xaxis (in steps of bw)
fill.colour, fill.color
fill color of bars
Value
KDE.load returns envir
print.kde returns x, invisibly
plot.kde returns the plot as recorded by recordPlot
kurtosis Sample Kurtosis
Description
kurtosis returns the sample kurtosis of a data vector/matrix
Usage
kurtosis(x, kurt.type = NULL, kurt.excess = FALSE, na.rm = FALSE)
Arguments
X A data vector/matrix
kurt.type The type of kurtosis statistic used ("Moment’, ’Fisher Pearson’ or ’Adjusted
Fisher Pearson’)
kurt.excess Logical value; if TRUE the function gives the excess kurtosis (instead of raw

kurtosis)

na.rm Logical value; if TRUE the function removes NA values

log 7

Details

This function computes the sample kurtosis for a data vector or matrix. For a vector input the
function returns a single value for the sample kurtosis of the data. For a matrix input the function
treats each column as a data vector and returns a vector of values for the sample kurtosis of each of
these datasets. The function can compute different types of kurtosis statistics using the kurt. type
1nput.

Value

The sample kurtosis of the data vector/matrix

Examples

kurtosis(rnorm(1000))
kurtosis(rexp(1000))

log Logarithm Function

Description

log returns the logarithm of the input

Usage
log(x, base = exp(1), gradient = FALSE, hessian = FALSE)

log2(x, gradient = FALSE, hessian = FALSE)

loglo(x, gradient = FALSE, hessian = FALSE)

Arguments
X An input value (numeric/complex scalar or vector)
base The base for the logarithm (a positive scalar value)
gradient Logical; if TRUE the output will include a 'gradient' attribute
hessian Logical; if TRUE the output will include a "hessian' attribute
Details

The logarithm function in base R accomodates complex numbers but it does not accomodate nega-
tive values (which is strange). The pressent version of the logarithm function allows both numeric
and complex inputs, including negative numeric values. For negative inputs this function gives
the princpal complex logarithm of the input value. If the output of the logarithm has no complex
part then the output is given as a numeric value. This function also allows the user to generate the
gradient and Hessian.

8 mappings

Value

The logarithm of the input

Examples

log(1)
log(-1)
log10(-10, TRUE, TRUE)

mappings Examine mappings between factor variables in a data-frame

Description

mappings determines the mappings between factor variables in a data-frame

Usage

mappings(data, na.rm = TRUE, all.vars = FALSE, plot = TRUE)

Arguments
data A data-frame (or an object coercible to a data-frame)
na.rm Logical value; if TRUE the function removes NA values from consideration
all.vars Logical value; if TRUE the function only examines factor variables in the data-
frame; if FALSE the function examines all variables in the data-frame (caution is
required in interpretation of output)
plot Logical value; if TRUE the function plots the DAG for the mappings (requires
ggplot2 and ggdag to work)
Details

In preliminary data analysis prior to statistical modelling, it is often useful to investigate whether
there are mappings between factor variables in a data-frame in order to see if any of these factor
variables are redundant (i.e., fully determined by other factor variables). This function takes an
input data-frame data and examines whether there are any mappings between the factor variables.
(Note that the function will interpret all character variables as factors but will not interpret numeric
or logical variables as factors.) The output is a list showing the uniqueness of the binary relations
between the factor variables (a logical matrix showing left-uniqueness in the binary relations), the
mappings between factor variables, the redundant and non-redundant factor variables, and the di-
rected acyclic graph (DAG) of these mappings (the last element requires the user to have the ggdag
package installed; it is omitted if the package is not installed). If plot = TRUE the function also
returns a plot of the DAG (if ggdag and ggplot2 packages are installed).

Note that the function also allows the user to examine mappings between all variables in the data-
frame (i.e., not just the factor variables) by setting all.vars = TRUE. The output from this analysis

moments 9

should be interpreted with caution; one-to-one mappings between non-factor variables are com-
mon (e.g., when two variables are continuous it is almost certain that they will be in a one-to-one
mapping), and so the existence of a mapping may not be indicative of variable redundancy.

Note on operation: If na.rm=FALSE then the function analyses the mappings between the fac-
tors/variables without removing NA values. In this case an NA value is treated as a missing value
that could be any outcome. Consequently, for purposes of determining whether there is a mapping
between the variables, an NA value is treated as if it were every possible value. The mapping is
falsified if there are at least two identical values in the domain (which may include one or more NA
values) that map to different values in the codomain (which may include one or more NA values).

Value

A list object of class 'mappings’ giving information on the mappings between the variables

Examples

DATA <- data.frame(
VAR1 = c(90,1,2,2,0,1,2,0,0,1),
VAR2 = C(‘A',IB"'BI"B',IA"'B"'BI,'A',IA"'BI),

VAR3 = 1:10,
VAR4 = c('A','B','C','D','A",'B",'D','A",'A",'B"),
VAR5 = c¢(1:5,1:5)

)

Apply mappings
mappings(DATA, all.vars = TRUE, plot = FALSE)

moments Sample Moments

Description

moments returns the sample moments of a data vector/matrix

Usage

moments (
X,
skew.type = NULL,
kurt.type = NULL,
kurt.excess = FALSE,
na.rm = TRUE,
include.sd = FALSE

10

Arguments

X

skew. type

kurt.type

kurt.excess

na.rm

include.sd

Details

moments

A data vector/matrix/list

The type of kurtosis statistic used ("Moment’, ’Fisher Pearson’ or ’Adjusted
Fisher Pearson’)

The type of kurtosis statistic used ("Moment’, ’Fisher Pearson’ or ’Adjusted
Fisher Pearson’)

Logical value; if TRUE the function gives the excess kurtosis (instead of raw
kurtosis)

Logical value; if TRUE the function removes NA values

Logical value; if TRUE the output includes a column for the sample standard
deviation (if needed)

This function computes the sample moments for a data vector, matrix or list (sample mean, sample
variance, sample skewness and sample kurtosis). For a vector input the function returns a single
value for each sample moment of the data. For a matrix or list input the function treats each col-
umn/element as a data vector and returns a matrix of values for the sample moments of each of
these datasets. The function can compute different types of skewness and kurtosis statistics using
the skew. type, kurt.type and kurt.excess inputs. (For details on the different types of skewness
and kurtosis statistics, see Joanes and Gill 1998.)

Value

A data frame containing the sample moments of the data vector/matrix

Examples

#Create some subgroups of mock data and a pooled dataset

set.seed(1)

N <- c(28, 44, 51)

SUB1 <- rnorm(N[11)

SUB2 <- rnorm(N[21)

SUB3 <- rnorm(N[3])

DATA <- list(Subgroupl = SUB1, Subgroup2 = SUB2, Subgroup3 = SUB3)
POOL <- c(SUBT, SUB2, SUB3)

#Compute sample moments for subgroups and pooled data
MOMENTS <- moments(DATA)
POOLMOM <- moments(POOL)

#Compute pooled moments via sample decomposition
sample.decomp(moments = MOMENTS)

nlm.prob 11

nlm.prob Nonlinear minimisation/maximisation allowing probability vectors as
inputs

Description

nlm.prob minimises/maximises a function allowing probability vectors as inputs

Usage

nlm.prob(
f,
p,
prob.vectors = list(1:1length(p)),

lambda = 1,

etadmax = 1e+10,

maximise = FALSE,

maximize = maximise,

hessian = FALSE,

typsize = rep(1, length(p)),

fscale = 1,
print.level = 0,
ndigit = 12,
gradtol = 1e-06,

stepmax = max(1000 * sqrt(sum((p/typsize)*2)), 1000),
steptol = 1e-06,

iterlim = 100,

check.analyticals = TRUE

)

Arguments
f The objective function to be minimised; output should be a single numeric value.
p Starting argument values for the minimisation.

prob.vectors Alistspecifying which sets of elements are constrained to be a probability vector
(each element in the list should be a vector specifying indices in the argument
vector; elements cannot overlap into multiple probability vectors).
Additional arguments to be passed to f via nlm

lambda The tuning parameter used in the softmax transformation for the optimisation (a
single positive numeric value).

etadmax The maximum absolute value for the elements of eta0 (the starting value in the
unconstrained optimisation problem).

maximise, maximize
Logical value; if TRUE the function maximises the objective function instead of
mimimising.

12 nlm.prob

hessian Logical; if TRUE then the output of the function includes the Hessian of f at the
minimising point.

typsize An estimate of the size of each parameter at the minimum.

fscale An estimate of the size of f at the minimum.

print.level This argument determines the level of printing which is done during the minimi-

sation process. The default value of @ means that no printing occurs, a value of
1 means that initial and final details are printed and a value of 2 means that full
tracing information is printed.

ndigit The number of significant digits in the function f.

gradtol A positive scalar giving the tolerance at which the scaled gradient is considered
close enough to zero to terminate the algorithm. The scaled gradient is a measure
of the relative change in f in each direction p[i] divided by the relative change
inp[il.

stepmax A positive scalar which gives the maximum allowable scaled step length. stepmax
is used to prevent steps which would cause the optimisation function to overflow,
to prevent the algorithm from leaving the area of interest in parameter space, or
to detect divergence in the algorithm. stepmax would be chosen small enough
to prevent the first two of these occurrences, but should be larger than any antic-
ipated reasonable step.

steptol A positive scalar providing the minimum allowable relative step length.

iterlim A positive integer specifying the maximum number of iterations to be performed
before the routine is terminated.

check.analyticals
Logical; if TRUE then the analytic gradients and Hessians (if supplied) are checked
against numerical derivatives at the initial parameter values. This can help detect
incorrectly formulated gradients or Hessians.

Details

This is a variation of the stats: :nlm function for nonlinear minimisation. The present function
is designed to minimise an objective function with one or more arguments that are probability
vectors. (The objective function may also have other arguments that are not probability vectors.)
The function uses the same inputs as the stats: : nlm function, except that the user can use the input
prob.vectors to specify which inputs are constrained to be probability vectors. This input is a list
where each element in the list specifies a set of indices for the argument of the objective function; the
specified set of indices is constrained to be a probability vector (i.e., each corresponding argument
is non-negative and the set of these arguments must sum to one). The input prob.vectors may list
one or more probability vectors, but they must use disjoint elements of the argument (i.e., a variable
in the argument cannot appear in more than one probability vector).

Optimisation is performed by first converting the objective function into unconstrained form using
the softmax transformation and its inverse to convert from unconstrained space to probability space
and back. Optimisation is done on the unconstrained objective function and the results are converted
back to probability space to solve the constrained optimisation problem. For purposes of conversion,
this function allows specification of a tuning parameter 1ambda for the softmax and inverse- softmax
transformations. (This input can either be a single tuning value used for all conversions, or a vector

PFD 13

of values for the respective probability vectors; if the latter, there must be one value for each element
of the prob.vector input.)

Most of the input descriptions below are adapted from the corresponding descriptions in stat: :nlm,
since our function is a wrapper to that function. The additional inputs for this function are prob.vectors,
lambda and eta@max. The function also adds an option maximise to conduct maximisation instead

of minimisation.

Value

A list showing the computed minimising point and minimum of f and other related information.

Examples

x <- rbinom(100, 1, .2)
nlm.prob(function(p) sum(dbinom(x,1,p[2],log=TRUE)), c(.5, .5), maximise = TRUE)

PFD Prime Factor Decomposition (PFD)

Description

PFD converts a positive integer to its prime-factor decomposition or *vice versa*

Usage

PFD(x)

S3 method for class 'prime.factor.decomposition'’

print(x, quote = FALSE, ...)
Arguments
X An input vector/matrix/array (can be a vector of integers/bigz or PFDs)
quote logical, indicating whether or not strings should be printed with surrounding
quotes.

further arguments passed to or from other methods.

Details

This function converts a vector of integers to a corresponding character vector giving the prime-
factor decomposition in a condensed form. The input can be a vector of integers or a ’bigz’ vec-
tor containing large integers. In either case the function returns the corresponding vector of the
prime-factor decomposition (PFD) values, written in a condensed character form. The function also
converts back from the PFD form to an integer/bigz vector.

This function depends on the gmp package.

14 plot.data.mappings

Value

If the input is integer/bigz then the output is the PFD; if the input is PFD then the output is inte-
ger/bigz

Examples

PFD(1:10)
stopifnot(all.equal(1:100, PFD(PFD(1:100))))

plot.data.mappings Plot components from data mapping

Description

This needs ggplot2 and ggdag to function correctly.

Usage

S3 method for class 'data.mappings'

plot(x, node.size = 1, text.size = 1, line.width =1, ...)
Arguments

X a data mapping

node.size node size

text.size label size for a node

line.width line width

not used

Value

nothing

queue

15

queue Generate queuing information from arrival and use times

Description

queue returns queuing information for users and service facilities.

Usage

queue(
n,
arrive,
use. full,
wait.max = NULL,
revive = 0,
close.arrive = Inf,
close.service = Inf,
close.full = Inf

)

S3 method for class 'queue'
print(x, ...)

S3 method for class 'queue'

plot(
X,
print = TRUE,
gap = NULL,

line.width = 2,
line.colors = NULL,
line.colours = line.colors,

)

S3 method for class 'queue'
summary (object, probs = NULL, probs.decimal.places = 2, ...)

S3 method for class 'summary.queue'
print(x, ...)

S3 method for class 'summary.queue'
plot(

X,

print = TRUE,

count = FALSE,

bar.colors = NULL,

bar.colours = bar.colors,

16 queue

)

Arguments
n Number of service facilities at the amenity (positive integer)
arrive Vector of arrival-times for the users (non-negative numeric values)
use.full Vector of (intended) use-times for the users (non-negative numeric values)
wait.max Vector of maximum-waiting-times for the users (non-negative numeric values)
revive Revival-time for service facilities

close.arrive Closure-time for new arrivals (no new arrivals allowed)
close.service Closure-time for new services (no new services allowed)
close.full Closure-time for all services (all existing services are terminated)
X, object a queue object

further arguments passed to or from other methods.

print, gap, line.width, line.colors, line.colours
plotting paramaters

probs summary quantiles to be included in output.

probs.decimal.places
rounds the output to specified number of decimal places.

count absolute or relative frequencies

bar.colors, bar.colours
plotting parameters

Details

This function computes takes inputs giving the arrival times and (intended) use times for a set of
users at an amenity, plus the number of service facilities at the amenity. The function computes full
information on the use of the facilities by the users, including their waiting time, actual use time,
leaving time, and the facility that was used by each user.

In addition to the required inputs, the function also accepts inputs for a maximum-waiting time for
each user; if the user waits up to this time then the user will leave without service. The user can
also impose closure times on new arrivals, new services, or termination of services.

Note: Service facilities are assumed to be allocated to users on a "first-come, first-served”
basis; in the event that more than one service facility is available for a user then the user is allocated
to facilities first-to-last based on the facility number (i.e., the allocation favours the earlier facilities
and it is not exchangeable with respect to the facility number).

Value

If all inputs are correctly specified then the function will return a list of class queue containing
queuing information for the users and service facilities

rm.attr 17

Examples

g <- queue(2, 4:6, 7:9)
summary (q)

plot(a)
plot(summary(q))

rm.attr Remove (non-protected) attributes from an object

Description

rm.attr removes (non-protected) attributes from an object

Usage
rm.attr(
object,
list.levels = Inf,
protected = c("class”, "dim", "names"”, "dimnames"”, "rownames", "colnames")
)
Arguments
object An object to operate on attributes from the object
list.levels A non-negative integer specifying the number of levels of lists to apply the re-
moval to
protected A character vector containing the names of protected attributes (not to be re-
moved)
Details

This function removes non-protected attributes from an R object. If the object is a list then the func-
tion will remove attributes within elements of the list down to the level specified by the list.levels
input. (By default the function removes attributes from all levels of lists.) If you do not want to
remove attributes from elements of a list (but still remove attributes from the outer level) you can
set list.levels =@ to do this..

Value

The object is returned with non-protected attributes removed

Examples

a <- structure(list(structure(l, x=2, names=3),
list (@, structure(3, x=4, names=5))),
x=3, names = 4)

str(rm.attr(a, 1))

18 sample.decomp

sample.all All Sampling Variations/Permutations

Description

sample.all returns a matrix of all sampling variations/permutations from a set of integers

Usage

sample.all(n, size = n, replace = FALSE, prob = NULL)

Arguments
n Number of integers to sample from
size Length of the sample vectors
replace Logical value; if FALSE the sampling is without replacement; if TRUE the sam-
pling is with replacement
prob Probability vector giving the sampling probability for each element (must be a
probability vector with length n)
Details
This function computes all sample vectors of size size composed of the elements 1, ..., n, either
with or without replacement of elements. If size = n and replace = TRUE then the list of all sample
vectors corresponds to a list of all permutations of the integers 1, ..., n.
Value
A matrix of all permutations of the elements 1, ..., n (rows of the matrix give the permutations)
Examples

sample.all(n = 4, replace = FALSE)

sample.decomp Sample decomposition

Description

sample.decomp returns the data-frame of sample statistics for sample groups and their pooled sam-
ple

sample.decomp 19

Usage

sample.decomp(
moments = NULL,
n = NULL,
sample.mean = NULL,
sample.sd = NULL,
sample.var = NULL,
sample.skew = NULL,
sample.kurt = NULL,
names = NULL,
pooled = NULL,
skew.type = NULL,
kurt.type = NULL,
kurt.excess = NULL,
include.sd = FALSE

)
Arguments

moments A data-frame of moments (an object of class 'moments’)

n A vector of sample sizes

sample.mean A vector of sample means

sample.sd A vector of sample standard deviations

sample.var A vector of sample variances

sample. skew A vector of sample skewness

sample.kurt A vector of sample kurotsis

names A vector of names for the sample groups

pooled The number of the pooled group (if the pooled group is already present)

skew. type The type of skewness statistic used ("Moment’, "Fisher Pearson’ or ’Adjusted
Fisher Pearson’)

kurt.type The type of kurtosis statistic used ("Moment’, ’Fisher Pearson’ or ’Adjusted
Fisher Pearson’)

kurt.excess Logical value; if TRUE the sample kurtosis is the excess kurtosis (instead of the
raw kurtosis)

include.sd Logical value; if TRUE the output includes a column for the sample standard
deviation (if needed)

Details

It is often useful to take a set of sample groups with known sample statistics and aggregate these
into a single pooled sample and find the sample statistics of the pooled sample. Likewise, it is
sometimes useful to take a set of sample groups and a pooled group with known sample statistics
and determine the statistics of the other group required to complete the pooled sample. Both of
these tasks can be accomplished using decomposition formulae for the sample size, sample mean
and sample variance (or sample standard deviation). This function implements either of these two

20

skewness

decomposition methods to find the sample statistics of the pooled sample or the other group re-
maining to obtain the pooled sample. The user inputs vectors for the sample size, sample mean
and sample variance (or sample standard deviation). By default the groups are taken to be separate
groups and the function computes the sample statistics for the pooled sample However, the user
can input the number pooled sample as the input pooled; in this case that group is treated as the
pooled sample and the function computes the other sample group required to obtain this pooled
sample. The function returns a data-frame showing the sample statistics for all the groups including
the pooled sample.

Value

A data-frame of all groups showing their sample sizes and sample moments

See Also

moments

skewness Sample Skewness

Description

skewness returns the sample skewness of a data vector/matrix

Usage

skewness(x, skew.type = NULL, na.rm = FALSE)

Arguments
X A data vector/matrix
skew. type The type of skewness statistic used ("Moment’, *Fisher Pearson’ or ’Adjusted
Fisher Pearson’)
na.rm Logical value; if TRUE the function removes NA values
Details

This function computes the sample skewness for a data vector or matrix. For a vector input the
function returns a single value for the sample skewness of the data. For a matrix input the function
treats each column as a data vector and returns a vector of values for the sample skewness of each of
these datasets. The function can compute different types of skewness statistics using the skew. type
input.

Value

The sample skewness of the data vector/matrix

softmax 21

Examples

skewness(rnorm(1000))
skewness(rexp(1000))

softmax Softmax and logsoftmax functions and their inverse functions

Description

softmax returns the value of the softmax function softmaxinv returns the value of the inverse-
softmax function logsoftmax returns the value of the logsoftmax function logsoftmaxinv returns
the value of the inverse-logsoftmax function

Usage
softmax(eta, lambda = 1, gradient = FALSE, hessian = FALSE)
softmaxinv(p, lambda = 1, gradient = FALSE, hessian = FALSE)
logsoftmax(eta, lambda = 1, gradient = FALSE, hessian = FALSE)

logsoftmaxinv(l, lambda = 1, gradient = FALSE, hessian = FALSE)

Arguments
eta A numeric vector input
lambda Tuning parameter (a single positive value)
gradient Logical
hessian Logical
p A probability vector (i.e., numeric vector of non-negative values that sum to
one)
1 A log-probability vector (i.e., numeric vector of non-positive values that logsum
to zero)
Details

The softmax function is a bijective function that maps a real vector with length m-1 to a probability
vector with length m with all non-zero probabilities. The softmax function is useful in a wide range
of probability and statistical applications. The present functions define the softmax function and its
inverse, both with a tuning parameter. It also defines the log-softmax function and its inverse, both
with a tuning parameter.

22 tailplot

Value

Value of the softmax function or its inverse (or their log). If gradient or hessian is TRUE, it will
be included as an attribute.

Examples

softmax(5:7)
softmaxinv(softmax(5:7))
logsoftmax(5:7)
logsoftmaxinv(logsoftmax(5:7))

tailplot Generate tail plots for a data vector

Description

tailplot generates the tail plot and Hill plot for the input data

Usage

tailplot(x, tail.prop = 0.05, left = TRUE, right = TRUE,
show.lines = TRUE, lines = 16, line.order = 3,
tail.plot = TRUE, hill.plot = FALSE, dsm.plot = FALSE,
point.size = 3, point.alpha = 0.4,
point.color = NULL, point.colour = point.color,
line.color = NULL, line.colour = line.color,
ytop.mult.left = 3, ytop.mult.right = 3)

Arguments
X Data vector (numeric)
tail.prop The proportion of values to use in each tail
left Logical; if TRUE the tail plot includes a plot for the left tail
right Logical; if TRUE the tail plot includes a plot for the upper tail
show.lines Logical; if TRUE the plots include lines for fixed logarithmic decay
lines Number of lines to include in the plot (included if show.lines is TRUE)
line.order Order of the lines in the plot (included if show.lines is TRUE)
tail.plot Logical; if TRUE the output includes the tail plot
hill.plot Logical; if TRUE the output includes the Hill plot
dsm.plot Logical; if TRUE the output includes the DSM plot
point.size Size of the points in the plots

point.alpha Alpha-transparency of the points in the plots
point.color, point.colour
Colour of the points in the plots (default is blue)

zipfplot 23

line.color, line.colour
Colour of the lines in the plots (default is darkred)

ytop.mult.left Multiplier used to determine the height of axis for left Hill/DSM plots

ytop.mult.right
Multiplier used to determine the height of axis for right Hill/DSM plots

Details

The tail plot for a dataset shows the rate of decay of the tails in the data. It is used to diagnose
whether certain moments of the underlying distribution exist (e.g., the variance), which is used in
turn to determine whether certain statistical laws apply to the distribution (e.g., the central limit
theorem). The Hill plot shows the adjusted Hill estimator for the tail index of the distribution.
The DSM (De-Sousa-Michailidis) plot shows the adjusted DSM estimator for the tail index of the
distribution. These latter estimators are very similar; more details are found in the reference below.
Our adjusted versions of these estimators are computed using data for the left and right deviations
from the extreme values of the dataset; this is done to ensure that the estimators are shift-invariant
(the standard Hill and DSM estimators are not).

The present function produces tail plots and Hill/DSM plots for the input data vector to show the
rate of decay in the tails. By default, both the tails are shown, but the user can show the plots only
for one tail if preferred. The user can turn any of the plots on or off using the inputs to the function.

By default, the tail plot includes lines showing cubic decay in the tails — if the tails of the dis-
tribution decay faster than cubic decay then the variance of the distribution exists. The user can
change the order of the lines in the plot to show other decay orders; this can be used to diagnose the
existence of moments of other orders.

De Sousa, B. and Michailidis, G. (2004) A Diagnostic Plot for Estimating the Tail Index of a
Distribution. Journal of Computational and Graphical Statistics 13(4), pp. 1-22.

Value

Tail plots for the input data (and Hill plots or DSM plots if requested)

Examples

try(tailplot(rnorm(500)))

zipfplot Generate Zipf plot

Description

zipfplot generates the Zipf plot for the input data

24
Usage
zipfplot(
X)
relative.freq = TRUE,
smooth.line = TRUE,
smooth.conf = TRUE,
conf.level = 0.99,
separate.plots = FALSE,
data.name = FALSE,
point.size = 3,
point.alpha = 0.4
)
Arguments
X

relative.freq

smooth.line

smooth.conf

conf.level
separate.plots
data.name
point.size

point.alpha

Data vector, matrix or data-frame

method

Details

Logical; if TRUE the plot shows the relative frequency on vertical axis

Logical; if TRUE the plot shows a smoothed line through the data using LOESS

The confidence level for the confidence bands on the smoothed line
Logical; if TRUE the plot shows

Logical; if TRUE the subtitle will state the name of the input data
Size of the points in the plot

Alpha-transparency of the points in the plot

zipfplot

Logical; if TRUE the plot shows confidence bands on the smoothed line (only
shown if smoothed line is shown)

The Zipf plot for a dataset shows the ranks of outcomes versus their frequency on a log-log scale.
It is used to determine how closely a dataset follows "Zipf’s law". The present function takes in a
vector of values and produces the Zipf plot. The data input can be either a vector, a matrix or a data
frame. If the input data is a vector then the output will be a Zipf plot for that data vector. If the input
data is a matrix or data frame then each column will be treated as a separate variable and the output
will be a single Zipf plot showing each of the variables. The user can control whether the variables

are shown on a single plot or separate plots.

Value

Zipf plot for the input data

Examples

try(zipfplot(sample(LETTERS, 300, replace = TRUE)))

Index

.print.data.frame, 2
datasets.str, 3

KDE, 4

KDE.load (KDE_utils), 5
KDE_utils, 5
kurtosis, 6

log, 7

logi0 (log), 7

log2 (log), 7

logsoftmax (softmax), 21
logsoftmaxinv (softmax), 21

mappings, 8
moments, 9, 20

nlm.prob, 11

PFD, 13

plot.data.mappings, 14

plot.kde (KDE_utils), 5

plot.queue (queue), 15

plot.summary.queue (queue), 15

print.data.frame, 2

print.data.mappings (mappings), 8

print.kde (KDE_utils), 5

print.prime.factor.decomposition (PFD),
13

print.queue (queue), 15

print.summary.queue (queue), 15

queue, 15
rm.attr, 17

sample.all, 18
sample.decomp, 18
skewness, 20
softmax, 21

25

softmaxinv (softmax), 21
summary . queue (queue), 15

tailplot, 22

zipfplot, 23

	.print.data.frame
	datasets.str
	KDE
	KDE_utils
	kurtosis
	log
	mappings
	moments
	nlm.prob
	PFD
	plot.data.mappings
	queue
	rm.attr
	sample.all
	sample.decomp
	skewness
	softmax
	tailplot
	zipfplot
	Index

