Package 'vDiveR'

January 23, 2023

Type Package

Title Visualization of Viral Protein Sequence Diversity Dynamics

Version 1.0.0

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Imports dplyr, gghalves, ggplot2, ggpubr, grid, gridExtra, ggtext, magrittr, plyr, tidyr, stringr, rlang

RoxygenNote 7.2.3

Depends R (>= 2.10)

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation no

Author Pendy Tok [aut, cre], Li Chuin Chong [aut], Evgenia Chikina [aut]

Maintainer Pendy Tok <pendytok0518@gmail.com>

Repository CRAN

Date/Publication 2023-01-23 09:40:02 UTC

R topics documented:

concat_conserved_kmer		•	•	 •		•	•	•				•	•		•		•			•	•	•	•		•		2
json2csv	•	•	•	 •	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3

JSONsample	3
plot_conservationLevel	4
plot_correlation	5
plot_dynamics_protein	6
plot_dynamics_proteome	7
plot_entropy	
plot_incidence	8
proteins_1host	
protein_2hosts	10
	12
	- 14

Index

concat_conserved_kmer k-mer sequences concatenation

Description

This function concatenates completely (index incidence = 100 index incidence < 100 k-mer position or are adjacent to each other and generate the CCS/HCS sequence in either CSv or FASTA format

Usage

```
concat_conserved_kmer(
  data,
  conservationLevel = "HCS",
  kmer = 9,
  output_type = "csv"
)
```

Arguments

data	DiMA JSON converted csv file data				
conservationLevel					
	CCS (completely conserved) / HCS (highly conserved)				
kmer	size of the k-mer window				
output_type	type of the output; "csv" or "fasta"				

Value

A dataframe

Examples

```
csv<-concat_conserved_kmer(proteins_1host)
csv_2hosts<-concat_conserved_kmer(protein_2hosts, conservationLevel = "CCS")
fasta <- concat_conserved_kmer(protein_2hosts, output_type = "fasta", conservationLevel = "HCS")</pre>
```

json2csv

Description

This function converts DiMA (v4.1.1) JSON output file to a dataframe with 17 predefined columns which further acts as the input for other functions provided in this vDiveR package.

Usage

```
json2csv(json_data, hostName = "unknown host", proteinName = "unknown protein")
```

Arguments

json_data	DiMA JSON output dataframe
hostName	name of the host species
proteinName	name of the protein

Value

A dataframe which acts as input for the other functions in vDiveR package

Examples

inputdf<-json2csv(JSONsample)</pre>

JSONsample

DiMA (v4.1.1) JSON Output File

Description

A sample DiMA JSON Output File which acts as the input for JSON2CSV()

Usage

JSONsample

Format

A Diversity Motif Analyzer (DiMA) tool JSON file

plot_conservationLevel

Conservation Levels Distribution Plot

Description

This function plots conservation levels distribution of k-mer positions, which consists of completely conserved (black) (index incidence = 100%), highly conserved (blue) (90% <= index incidence < 100%), mixed variable (green) (20% < index incidence <= 90%), highly diverse (purple) (10% < index incidence <= 20%) and extremely diverse (pink) (index incidence <= 10%).

Usage

```
plot_conservationLevel(
    df,
    proteinOrder = "",
    conservationLabel = 1,
    host = 1,
    base_size = 11,
    label_size = 2.6,
    alpha = 0.6
)
```

Arguments

df	DiMA JSON converted csv file data
proteinOrder	order of proteins displayed in plot
conservationLa	bel
	0 (partial; show present conservation labels only) or 1 (full; show ALL conservation labels) in plot
host	number of host (1/2)
base_size	base font size in plot
label_size	conservation labels font size
alpha	any number from 0 (transparent) to 1 (opaque)

Value

A plot

Examples

```
plot_conservationLevel(proteins_1host, conservationLabel = 1,alpha=0.8, base_size = 15)
plot_conservationLevel(protein_2hosts, conservationLabel = 0, host=2)
```

plot_correlation Entropy and total variant incidence correlation plot

Description

This function plots the correlation between entropy and total variant incidence of all the provided protein(s).

Usage

```
plot_correlation(
    df,
    host = 1,
    alpha = 1/3,
    size = 3,
    ylabel = "k-mer entropy (bits)\n",
    xlabel = "\nTotal variants (%)",
    ymax = ceiling(max(df$entropy)),
    ybreak = 0.5
)
```

Arguments

df	DiMA JSON converted csv file data
host	number of host (1/2)
alpha	any number from 0 (transparent) to 1 (opaque)
size	dot size in scatter plot
ylabel	y-axis label
xlabel	x-axis label
ymax	maximum y-axis
ybreak	y-axis breaks

Value

A scatter plot

Examples

```
plot_correlation(proteins_1host)
plot_correlation(protein_2hosts, size = 2, ybreak=1, ymax=10, host = 2)
```

plot_dynamics_protein Dynamics of Diversity Motifs (Protein) Plot

Description

This function compactly display the dynamics of diversity motifs (index and its variants: major, minor and unique) in the form of dot plot(s) as well as violin plots for all the provided individual protein(s).

Usage

```
plot_dynamics_protein(
 df,
 host = 1,
 proteinOrder = "",
 base_size = 8,
 alpha = 1/3,
 dot_size = 3
)
```

Arguments

df	DiMA JSON converted csv file data
host	number of host (1/2)
proteinOrder	order of proteins displayed in plot
base_size	base font size in plot
alpha	any number from 0 (transparent) to 1 (opaque)
dot_size	dot size in scatter plot

Value

A plot

Examples

plot_dynamics_protein(proteins_1host)

plot_dynamics_proteome

Dynamics of Diversity Motifs (Proteome) Plot

Description

This function compactly display the dynamics of diversity motifs (index and its variants: major, minor and unique) in the form of dot plot as well as violin plot for all the provided proteins at proteome level.

Usage

```
plot_dynamics_proteome(df, host = 1, dot_size = 2, word_size = 15, alpha = 1/3)
```

Arguments

df	DiMA JSON converted csv file data
host	number of host (1/2)
dot_size	size of dot in plot
word_size	word size in plot
alpha	any number from 0 (transparent) to 1 (opaque)

Value

A plot

Examples

plot_dynamics_proteome(proteins_1host)

plot_entropy

Entropy plot

Description

This function plot entropy (black) of each k-mer position across the studied proteins and highlight region with zero entropy in yellow.

Usage

```
plot_entropy(
   df,
   host = 1,
   proteinOrder = "",
   kmer_size = 9,
   ymax = 10,
   line_dot_size = 2,
   wordsize = 8
)
```

Arguments

hostnumber of host (1/2)proteinOrderorder of proteins displayed in plotkmer_sizesize of the k-mer windowymaxmaximum y-axisline_dot_sizesize of the line and dot in plotwordsizesize of the wordings in plot	df	DiMA JSON converted csv file data
kmer_sizesize of the k-mer windowymaxmaximum y-axisline_dot_sizesize of the line and dot in plot	host	number of host $(1/2)$
ymaxmaximum y-axisline_dot_sizesize of the line and dot in plot	proteinOrder	order of proteins displayed in plot
line_dot_size size of the line and dot in plot	kmer_size	size of the k-mer window
1	ymax	maximum y-axis
wordsize size of the wordings in plot	line_dot_size	size of the line and dot in plot
8 I	wordsize	size of the wordings in plot

Value

A plot

Examples

plot_entropy(proteins_1host)
plot_entropy(protein_2hosts, host = 2)

plot_incidence Entropy and total variant incidence plot

Description

This function plot entropy (black) and total variant (red) incidence of each k-mer position across the studied proteins and highlight region with zero entropy in yellow.

Usage

```
plot_incidence(
   df,
   host = 1,
   proteinOrder = "",
   kmer_size = 9,
```

8

proteins_1host

```
ymax = 10,
line_dot_size = 2,
wordsize = 8
)
```

Arguments

df	DiMA JSON converted csv file data
host	number of host (1/2)
proteinOrder	order of proteins displayed in plot
kmer_size	size of the k-mer window
ymax	maximum y-axis
line_dot_size	size of the line and dot in plot
wordsize	size of the wordings in plot

Value

A plot

Examples

```
plot_incidence(proteins_1host)
plot_incidence(protein_2hosts, host = 2)
```

proteins_1host DiMA (v4.1.1) JSON converted-CSV Output Sample 1

Description

A dummy dataset with two proteins (A and B) from one host, human

Usage

proteins_1host

Format

A data frame with 806 rows and 17 variables:

proteinName name of the protein

position starting position of the aligned, overlapping k-mer window

count number of k-mer sequences at the given position

lowSupport k-mer position with sequences lesser than the minimum support threshold (TRUE) are considered of low support, in terms of sample size

entropy level of variability at the k-mer position, with zero representing completely conserved

indexSequence the predominant sequence (index motif) at the given k-mer position

index.incidence the fraction (in percentage) of the index sequences at the k-mer position

- **major.incidence** the fraction (in percentage) of the major sequence (the predominant variant to the index) at the k-mer position
- **minor.incidence** the fraction (in percentage) of minor sequences (of frequency lesser than the major variant, but not singletons) at the k-mer position
- **unique.incidence** the fraction (in percentage) of unique sequences (singletons, observed only once) at the k-mer position
- **totalVariants.incidence** the fraction (in percentage) of sequences at the k-mer position that are variants to the index (includes: major, minor and unique variants)

distinctVariant.incidence incidence of the distinct k-mer peptides at the k-mer position

multiIndex presence of more than one index sequence of equal incidence

host species name of the organism host to the virus

highestEntropy.position k-mer position that has the highest entropy value

highestEntropy highest entropy values observed in the studied protein

averageEntropy average entropy values across all the k-mer positions

protein_2hosts DiMA (v4.1.1) JSON converted-CSV Output Sample 2

Description

A dummy dataset with 1 protein (Core) from two hosts, human and bat

Usage

protein_2hosts

Format

A data frame with 200 rows and 17 variables:

proteinName name of the protein

position starting position of the aligned, overlapping k-mer window

count number of k-mer sequences at the given position

lowSupport k-mer position with sequences lesser than the minimum support threshold (TRUE) are considered of low support, in terms of sample size

entropy level of variability at the k-mer position, with zero representing completely conserved

indexSequence the predominant sequence (index motif) at the given k-mer position

index.incidence the fraction (in percentage) of the index sequences at the k-mer position

major.incidence the fraction (in percentage) of the major sequence (the predominant variant to the index) at the k-mer position

- **minor.incidence** the fraction (in percentage) of minor sequences (of frequency lesser than the major variant, but not singletons) at the k-mer position
- **unique.incidence** the fraction (in percentage) of unique sequences (singletons, observed only once) at the k-mer position
- **totalVariants.incidence** the fraction (in percentage) of sequences at the k-mer position that are variants to the index (includes: major, minor and unique variants)

distinctVariant.incidence incidence of the distinct k-mer peptides at the k-mer position

multiIndex presence of more than one index sequence of equal incidence

host species name of the organism host to the virus

highestEntropy.position k-mer position that has the highest entropy value

highestEntropy highest entropy values observed in the studied protein

averageEntropy average entropy values across all the k-mer positions

Index

* datasets JSONsample, 3 protein_2hosts, 10 proteins_1host, 9 concat_conserved_kmer, 2 json2csv, 3 JSONsample, 3 plot_conservationLevel, 4 plot_correlation, 5 plot_dynamics_protein, 6 plot_dynamics_proteome, 7 plot_entropy, 7 plot_incidence, 8 protein_2hosts, 10 proteins_1host, 9