The vennLasso
package provides methods for hierarchical
variable selection for models with covariate effects stratified by
multiple binary factors.
The vennLasso
package can be installed from CRAN
using:
install.packages("vennLasso")
The development version can be installed using the devtools package:
::install_github("jaredhuling/vennLasso") devtools
or by cloning and building.
Load the vennLasso package:
library(vennLasso)
Access help file for the main fitting function
vennLasso()
by running:
?vennLasso
Help file for cross validation function cv.vennLasso()
can be accessed by running:
?cv.vennLasso
Simulate heterogeneous data:
set.seed(100)
<- genHierSparseData(ncats = 3, # number of stratifying factors
dat.sim nvars = 25, # number of variables
nobs = 150, # number of observations per strata
nobs.test = 10000,
hier.sparsity.param = 0.5,
prop.zero.vars = 0.75, # proportion of variables
# zero for all strata
snr = 0.5, # signal-to-noise ratio
family = "gaussian")
# design matrices
<- dat.sim$x
x <- dat.sim$x.test
x.test
# response vectors
<- dat.sim$y
y <- dat.sim$y.test
y.test
# binary stratifying factors
<- dat.sim$group.ind
grp <- dat.sim$group.ind.test grp.test
Inspect the populations for each strata:
plotVenn(grp)
Fit vennLasso model with tuning parameter selected with 5-fold cross validation:
<- cv.vennLasso(x, y,
fit.adapt
grp,adaptive.lasso = TRUE,
nlambda = 50,
family = "gaussian",
standardize = FALSE,
intercept = TRUE,
nfolds = 5)
Plot selected variables for each strata (not run):
library(igraph)
##
## Attaching package: 'igraph'
## The following objects are masked from 'package:stats':
##
## decompose, spectrum
## The following object is masked from 'package:base':
##
## union
plotSelections(fit.adapt)
Predict response for test data:
<- predict(fit.adapt, x.test, grp.test, s = "lambda.min",
preds.vl type = 'response')
Evaluate mean squared error:
mean((y.test - preds.vl) ^ 2)
## [1] 0.6852124
mean((y.test - mean(y.test)) ^ 2)
## [1] 1.011026
Compare with naive model with all interactions between covariates and stratifying binary factors:
<- data.frame(y = y, x = x, grp = grp)
df.x <- data.frame(x = x.test, grp = grp.test)
df.x.test
# create formula for interactions between factors and covariates
<- paste("y ~ (", paste(paste0("x.", 1:ncol(x)), collapse = "+"), ")*(grp.1*grp.2*grp.3)" ) form
Fit linear model and generate predictions for test set:
<- lm(as.formula(form), data = df.x)
lmf
<- predict(lmf, df.x.test) preds.lm
Evaluate mean squared error:
mean((y.test - preds.lm) ^ 2)
## [1] 0.8056107
mean((y.test - preds.vl) ^ 2)
## [1] 0.6852124