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autocorrelation_coeff_h

‘autocorrelation_coeff_h‘ Computes the approximate functional auto-
correlation coefficient at a given lag.

Description

‘autocorrelation_coeff_h‘ Computes the approximate functional autocorrelation coefficient at a given
lag.

Usage

autocorrelation_coeff_h(f_data, lag)
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Arguments

f_data the functional data matrix with observed functions in the columns

lag the lag to use to compute the single lag test statistic

Value

numeric value; the approximate functional autocorrelation coefficient at lag h.

autocorrelation_coeff_plot

Plot Confidence Bounds of Estimated Functional Autocorrelation Co-
efficients

Description

‘autocorrelation_coeff_plot‘ Computes the 1-alpha upper confidence bounds for the functional au-
tocorrelation coefficients at lags h = 1:K under both weak white noise (WWN) and strong white
noise (SWN) assumptions. It plots the coefficients as well as the bounds for all lags h = 1:K. Note,
the SWN bound is constant, while the WWN is dependent on the lag.

Usage

autocorrelation_coeff_plot(
f_data,
K = 20,
alpha = 0.05,
M = NULL,
wwn_bound = TRUE

)

Arguments

f_data The functional data matrix with observed functions in the columns.

K A positive Integer value. The maximum lag for which to compute the single-lag
test (tests will be computed for lags h in 1:K).

alpha A numeric value between 0 and 1 specifying the significance level to be used in
the single-lag test. The default value is 0.05.

M A positive Integer value. Determines the number of Monte-Carlo simulations
employed in the Welch-Satterthwaite approximation of the limiting distribution
of the test statistics, for each test.

wwn_bound A Boolean value allowing the user to turn off the weak white noise bound.
TRUE by default. Speeds up computation when FALSE.
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Details

This function computes and plots autocorrelation coefficients at lag h, for h in 1:K. It also computes
an estimated asymptotic 1 - alpha confidence bound, under the assumption that the series forms a
weak white noise. Additionally, it computes a similar (constant) bound under the assumption the
series form a strong white noise. Please see the vignette or the references for a more complete
treatment.

Value

Plot of the estimated autocorrelation coefficients for lags h in 1:K with the weak white noise 1-alpha
upper confidence bound for each lag, as well as the constant strong white noise 1-alpha confidence
bound.

References

[1] Kokoszka P., & Rice G., & Shang H.L. (2017). Inference for the autocovariance of a functional
time series under conditional heteroscedasticity. Journal of Multivariate Analysis, 162, 32-50.

Examples

b <- brown_motion(75, 40)
autocorrelation_coeff_plot(b)
autocorrelation_coeff_plot(b, M = 200)

autocov_approx_h Compute the approximate autocovariance at specified lag

Description

‘autocov_approx_h‘ Computes the approximate autocovariance for a given lag h of the functional
data

Usage

autocov_approx_h(f_data, lag)

Arguments

f_data the functional data matrix with observed functions in the columns

lag the lag to use to compute the single lag test statistic

Value

A 2-dimensional array encoding the autocovariance matrix for a given lag h.
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bartlett_kernel Bartlett Kernel Function

Description

‘bartlett_kernel‘ Computes the Bartlett kernel function at a given point value.

Usage

bartlett_kernel(x)

Arguments

x the point value at which the kernel function is evaluated

Value

A scalar value; the value of the Bartlett kernel function at the point value x.

block_bootsrap ‘block_bootstrap‘ Performs a block bootstrap on the functional data
f_data with block size b.

Description

‘block_bootstrap‘ Performs a block bootstrap on the functional data f_data with block size b.

Usage

block_bootsrap(f_data, b, B = 300, moving = FALSE)

Arguments

f_data the functional data matrix with observed functions in the columns

b the block size (of each block in each bootstrap sample)

B the number of bootstraps samples

moving boolean value specifying whether the block bootstrap should be moving or not.
A moving black bootstrap samples individual functional observations and adds
on the consequent block, rather than sampling blocks of the data.

Value

Returns a list of B elements, each element being a block bootstrap sample in the same format as the
original functional data f_data.
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brown_motion ‘brown_motion‘ Creates at J x N matrix, containing N independent
Brownian motion sample paths in each of the columns.

Description

‘brown_motion‘ Creates at J x N matrix, containing N independent Brownian motion sample paths
in each of the columns.

Usage

brown_motion(N, J)

Arguments

N the number of independent Brownian motion sample paths to compute.

J the number of steps observed for each sample path (the resolution of the data).

Value

A J x N matrix containing Brownian motion functional data in the columns.

Examples

b <- brown_motion(250, 50)

B_h_bound Compute weak white noise confidence bound for autocorrelation coef-
ficient.

Description

‘B_h_bound‘ Computes an approximate asymptotic upper 1-alpha confidence bound for the func-
tional autocorrelation coefficient at lag h under a weak white noise assumption.

Usage

B_h_bound(f_data, lag, alpha = 0.05, M = NULL)

Arguments

f_data the functional data matrix with observed functions in the columns

lag the lag to use to compute the single lag test statistic

alpha the significance level to be used in the hypothesis test

M Number of samples to take when applying a Monte-Carlo approximation
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Value

numeric value; the 1-alpha confidence bound for the functional autocorrelation coefficient at lag h
under a weak white noise assumption.

B_iid_bound Compute strong white noise confidence bound for autocorrelation co-
efficient.

Description

‘B_iid_bound‘ Computes an approximate asymptotic upper 1-alpha confidence bound for the func-
tional autocorrelation coefficient at lag h under the assumption that f_data forms a strong white
noise

Usage

B_iid_bound(f_data, alpha = 0.05)

Arguments

f_data the functional data matrix with observed functions in the columns

alpha the significance level to be used in the hypothesis test

Value

Numeric value; the 1-alpha confidence bound for the functional autocorrelation coefficient at lag h
under a strong white noise assumption.

center Center functional data

Description

‘center‘ Centers the given functional data

Usage

center(f_data)

Arguments

f_data the functional data matrix with observed functions in the columns

Value

A matrix of the same form as f_data containing the centered functional data.
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covariance_diag_store List storage of diagonal covariances.

Description

‘covariance_diag_store‘ Creates a list storage of approximate diagonal covariances computed by
the function diagonal_covariance_i

Usage

covariance_diag_store(f_data, K)

Arguments

f_data the functional data matrix with observed functions in the columns

K the range of lags 1:K to use

Value

A list containing K 2-dimensional arrays containing the diagonal covariance matrices of the func-
tional data, for lags h in the range 1:K.

covariance_i_j Compute the approximate covariance tensor for lag windows defined
by i,j

Description

‘covariance_i_j‘ Computes the approximate covariance tensor of the functional data for lag win-
dows defined by i,j.

Usage

covariance_i_j(f_data, i, j)

Arguments

f_data the functional data matrix with observed functions in the columns

i, j the indices i,j in 1:T that we are computing the covariance for

Value

A 4-dimensional array, encoding the covariance tensor of the functional data for lag windows de-
fined by i,j.
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covariance_i_j_vec Compute the approximate covariance tensor for lag windows defined
by i,j

Description

‘covariance_i_j_vec‘ Computes the approximate covariance tensor of the functional data for lag
windows defined by i,j; a vectorized version of covariance_i_j.

Usage

covariance_i_j_vec(f_data, i, j)

Arguments

f_data the functional data matrix with observed functions in the columns

i, j the indices i,j in 1:T that we are computing the covariance for

Value

A 4-dimensional array, encoding the covariance tensor of the functional data for lag windows de-
fined by i,j.

daniell_kernel Daniell Kernel Function

Description

‘daniell_kernel‘ Computes the Daniell kernel function at a given point value.

Usage

daniell_kernel(x)

Arguments

x the point value at which the kernel function is evaluated

Value

A scalar value; the value of the Daniell kernel function at the point value x.
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diagonal_autocov_approx_0

Compute the diagonal covariance

Description

‘diagonal_autocov_approx_0‘ Computes the diagonal covariance of the given functional data.

Usage

diagonal_autocov_approx_0(f_data)

Arguments

f_data the functional data matrix with observed functions in the columns

Value

A numeric value; integral approximation of the diagonal covariance of the functional data.

diagonal_covariance_i Compute the approximate diagonal covariance matrix for lag windows
defined by i

Description

‘diagonal_covariance_i‘ Computes the approximate diagonal covariance matrix of the functional
data for lag windows defined by i.

Usage

diagonal_covariance_i(f_data, i)

Arguments

f_data the functional data matrix with observed functions in the columns

i the index in 1:T that we are computing the covariance for

Value

A 2-dimensional array, encoding the covariance matrix of the functional data for lag windows de-
fined by i.
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far_1_S ‘far_1_S‘ Simulates an FAR(1,S)-fGARCH(1,1) process with N inde-
pendent observations, each observed discretely at J points on the in-
terval [0,1].

Description

‘far_1_S‘ Simulates an FAR(1,S)-fGARCH(1,1) process with N independent observations, each
observed discretely at J points on the interval [0,1].

Usage

far_1_S(N, J, S, type = "IID", burn_in = 50)

Arguments

N the number of fGARCH(1,1) curves to sample.

J the number of points at which each curve is sampled (the resolution of the data).

S the autoregressive operator of the model, between 0 and 1, indicating the level
of conditional heteroscedasticity.

type the assumed model of the error term. The default argument is ’IID’, under which
the errors are assumed to be independent and identically distributed. The al-
ternative argument is ’fGARCH’, which will assume that the errors follow an
fGARCH(1,1) process.

burn_in the number of initial samples to burn (discard).

Value

A J x N matrix containing FAR(1,S) functional data in the columns.

Examples

f <- far_1_S(100, 50, 0.75)

fgarch_1_1 ‘fgarch_1_1‘ Simulates an fGARCH(1,1) process with N independent
observations, each observed

Description

‘fgarch_1_1‘ Simulates an fGARCH(1,1) process with N independent observations, each observed

Usage

fgarch_1_1(N, J, delta = 0.01, burn_in = 50)
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Arguments

N the number of fGARCH(1,1) curves to sample.

J the number of points at which each curve is sampled (the resolution of the data).

delta a parameter used in the variance recursion of the model.

burn_in the number of initial samples to burn (discard).

Value

A list containing two J x N matrices, the former containing the sample of fGARCH(1,1) curves and
the latter containing the respective variance values.

Examples

f <- fgarch_1_1(100, 50)

fport_test Compute Functional Hypothesis Tests

Description

‘fport_test‘ Computes a variety of functional portmanteau hypothesis tests. All hypothesis tests in
this package are accessible through this function.

Usage

fport_test(
f_data,
test = "multi-lag",
lag = NULL,
iid = FALSE,
M = NULL,
kernel = "Bartlett",
bandwidth = "adaptive",
components = 3,
bootstrap = FALSE,
block_size = "adaptive",
moving = FALSE,
straps = 300,
alpha = 0.05,
complete_test = FALSE,
suppress_raw_output = FALSE,
suppress_print_output = FALSE

)
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Arguments

f_data The functional data matrix with observed functions in the columns.

test A String specifying the hypothesis test. Currently available tests are referred
to by their string handles: "single-lag", "multi-lag", "spectral", "independence",
and "imhof". Please see the Details section of the documentation, or the vignette,
for a short overview of the available tests. For a more complete treatment of
these hypothesis tests, please consult the references.

lag A positive integer value. Only used for the "single-lag", "multi-lag", "indepen-
dence", and "imhof" tests. This parameter specifies the single lag, or maximum
lag, to be used by the specified test.

iid Only used for the "single-lag" and "multi-lag" tests. A Boolean value, FALSE
by default. If given TRUE, the hypothesis test will use a strong-white noise
assumption (instead of a weak-white noise assumption).

M Only used for the "single-lag" and "multi-lag" tests. A positive Integer. Deter-
mines the number of Monte-Carlo simulations employed in the Welch-Satterthwaite
approximation of the limiting distribution of the test statistic.

kernel Only used for the "spectral" test. A String, ’Bartlett’ by default. Specifies the
kernel to be used in the "spectral" test. Currently supported kernels are the
’Bartlett’ and ’Parzen’ kernels.

bandwidth Only used for the "spectral" test. Either a String or a positive Integer value,
’adaptive’ by default. Determines the bandwidth (or lag-window) to be used
for the test. Given the string handle ’adaptive’, the bandwidth is computed via
a bandwidth selection method which aims to minimize the integrated normed
error of the spectral density operator. If the given string handle is ’static’, the
bandwidth is computed to be n^(1/(2q + 1)), where n is the sample size and q is
the kernel order. If a positive integer is given, that will be the bandwidth that is
used.

components Only used for the "independence" test. A positive Integer value. Determines the
number of functional principal components to use (ranked by their importance).

bootstrap Only used for the "single-lag" test. A Boolean value, FALSE by default. If given
TRUE, the hypothesis test is evaluated by approximating the limiting distribu-
tion of the test statistic via a block bootstrapping process.

block_size Only used for the "single-lag" test in the case when ’bootstrap’ = TRUE. A
positive Integer value, with the default value being computed via the adaptive
bandwidth selection method in the "spectral" test. Determines the block size (of
each block in each bootstrap sample) if the test is being bootstrapped.

moving Only used for the "single-lag" test in the case when ’bootstrap’ = TRUE. A
Boolean value, FALSE by default If given TRUE, the performed block bootstrap
will be moving rather than stationary.

straps Only used for the "single-lag" test in the case when ’bootstrap’ = TRUE. A
positive Integer with a default value of 300. Determines the number of bootstrap
samples to take if the test is being bootstrapped.

alpha Numeric value between 0 and 1 specifying the significance level to be used in the
specified hypothesis test. The default value is 0.05. Note, the significance value
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is only ever used to compute the 1-alpha quantile of the limiting distribution of
the specified test’s test statistic.

complete_test A Boolean value, FALSE by default. If TRUE, the function requires no other
parameters other than f_data, and will return a table with a single column con-
taining p-values from an array of tests contained in the rows.

suppress_raw_output

A Boolean value, FALSE by default. If given TRUE, the function will not return
a list containing the p-value, quantile and statistic, and instead only prints output
to the console.

suppress_print_output

A Boolean value, FALSE by default. If TRUE, the function will not print any
output to the console.

Details

The "single-lag" portmanteau test is based on the sample autocovariance function computed from
the functional data. This test assesses the significance of lagged autocovariance operators at a single,
user-specified lag h. More specifically, it tests the null hypothesis that the lag-h autocovariance
operator is equal to 0. This test is designed for stationary functional time-series, and is valid under
conditional heteroscedasticity conditions. The required parameter for this test are ’lag’, which
determines the lag at which the test is evaluated. If this parameter is left blank, it will take a
default of 1. The optional parameters for this test are ’iid’, ’M’, ’bootstrap’, ’block_size’, ’straps’,
’moving’, and ’alpha’.

The "multi-lag" portmanteau test is also based on the sample autocovariance function computed
from the functional data. This test assesses the cumulative significance of lagged autocovariance
operators, up to a user-selected maximum lag K. More specifically, it tests the null hypothesis that
the first K lag-h autocovariance operators (h going from 1 to K) is equal to 0. This test is designed
for stationary functional time-series, and is valid under conditional heteroscedasticity conditions.
The required parameter for this test is ’lag’, which determines the maximum lag at which the test
is evaluated. If this parameter is left blank, it will take a default of 20. The optional parameters for
this test are ’iid’, ’M’, ’bootstrap’, ’block_size’, ’straps’, ’moving’, and ’alpha’.

The "spectral" portmanteau test is based on the spectral density operator. It essentially measures
the proximity of a functional time series to a white noise - the constant spectral density operator
of an uncorrelated series. Unlike the "single-lag" and "multi-lag" tests, this test is not for general
white noise series, and may not hold under functional conditionally heteroscedastic assumptions.
The optional parameters for this test are ’kernel’, ’bandwidth’, and ’alpha’.

The "independence" portmanteau test is a test of independence and identical distribution based
on a dimensionality reduction by projecting the data onto the most important functional principal
components. It is based on the resulting lagged cross-variances. This test is not for general white
noise series, and may not hold under functional conditionally heteroscedastic assumptions. The
required parameters for this test are ’lag’ and ’components’. The ’lag’ parameter determines the
maximum lag at which the test is evaluated. The ’components’ parameter determines the number
of the most important principal components to use (importance is determined by the proportion of
the variance that is explained by the individual principal component.)

The "imhof" portmanteau test is an analogue of the "single-lag" test. While the "single-lag" test
computes the limiting distribution of the test statistic via a Welch-Satterthwaite approximation, the
"imhof" test directly computes the coefficients of the quadratic form in Normal variables which
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the test statistic converges too as the sample size goes to infinity. We warn the user that this test
is extremely computationally expensive, and is only recommended for small datasets as a means
of cross-verification against the single-lag test. The required parameter for this test is ’lag’, which
determines the lag at which the test is evaluated. The "imhof" test requires the "tensorA" and
"CompQuadForm" packages. Note also that the imhof test does not return a statistic, and thus
returns a list with only 2 elements if suppress_raw_output = FALSE.

Value

If suppress_raw_output = FALSE, a list containing the test statistic, the 1-alpha quantile of the
limiting distribution, and the p-value computed from the specified hypothesis test. Also prints
output containing a short description of the test, the p-value, and additional information about the
test if suppress_print_output = FALSE. If ’complete-test’ = TRUE, will return a 1-column table
instead containing the p-values for a variety of tests, which are given short descriptions in the index
of the table.

References

[1] Kokoszka P., & Rice G., & Shang H.L. (2017). Inference for the autocovariance of a functional
time series under conditional heteroscedasticity. Journal of Multivariate Analysis, 162, 32-50.

[2] Characiejus V., & Rice G. (2019). A general white noise test based on kernel lag-window
estimates of the spectral density operator. Econometrics and Statistics, submitted.

[3] Gabrys R., & Kokoszka P. (2007). Portmanteau Test of Independence for Functional Observa-
tions. Journal of the American Statistical Association, 102:480, 1338-1348, DOI: 10.1198/016214507000001111.

[4] Zhang X. (2016). White noise testing and model diagnostic checking for functional time series.
Journal of Econometrics, 194, 76-95.

[5] Chen W.W. & Deo R.S. (2004). Power transformations to induce normality and their applica-
tions. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 66, 117–130.

Examples

b <- brown_motion(250, 50)
fport_test(b, test = 'single-lag', lag = 10)
fport_test(b, test = 'multi-lag', lag = 10, alpha = 0.01)
fport_test(b, test = 'single-lag', lag = 1, M = 250)
fport_test(b, test = 'spectral', kernel = 'Bartlett', bandwidth = 'static', alpha = 0.05)
fport_test(b, test = 'spectral', alpha = 0.1, kernel = 'Parzen', bandwidth = 'adaptive')
fport_test(b, test = 'independence', components = 3, lag = 3)

iid_covariance Compute part of the covariance under a strong white noise assumption

Description

‘iid_covariance‘ A helper function used to compute one of the two independent sum terms in the
computation of the approximate covariance of the functional data under a strong white noise as-
sumption.
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Usage

iid_covariance(f_data)

Arguments

f_data the functional data matrix with observed functions in the columns

Value

A 2-dimensional matrix containing one of the two independent sums in the computation of the
covariance.

iid_covariance_vec Compute part of the covariance under a strong white noise assumption

Description

‘iid_covariance_vec‘ A helper function used to compute one of the two independent sum terms in
the computation of the approximate covariance of the functional data under a strong white noise
assumption; a vectorized version of iid_covariance.

Usage

iid_covariance_vec(f_data)

Arguments

f_data the functional data matrix with observed functions in the columns

Value

A 2-dimensional matrix containing one of the two independent sums in the computation of the
covariance.

independence_test Independence Test

Description

‘independence_test‘ Computes the independence test with a user-specified number of principal
components and range of lags.
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Usage

independence_test(
f_data,
components,
lag,
alpha = 0.05,
suppress_raw_output = FALSE,
suppress_print_output = FALSE

)

Arguments

f_data the functional data matrix with observed functions in the columns

components A positive Integer specifying the number of principal components to project the
data on; ranked in order of importance (importance is determined by the propor-
tion of the variance that is explained by the individual principal component.)

lag A positive Integer value, specifying the maximum lag to include - this can be
seen as the bandwidth or lag-window.

alpha Numeric value between 0 and 1 specifying the significance level to be used in the
specified hypothesis test. The default value is 0.05. Note, the significance value
is only ever used to compute the 1-alpha quantile of the limiting distribution of
the specified test’s test statistic.

suppress_raw_output

Boolean value, FALSE by default. If TRUE, the function will not return the list
containing the p-value, quantile, and statistic.

suppress_print_output

Boolean value, FALSE by default. If TRUE, the function will not print any
output to the console.

Details

The "independence" portmanteau test is a test of independence and identical distribution based
on a dimensionality reduction by projecting the data onto the most important functional principal
components. It is based on the resulting lagged cross-variances. This test is not for general white
noise series, and may not hold under functional conditionally heteroscedastic assumptions. Please
consult the vignette for a deeper exposition, and consult the reference for a complete treatment.

Value

If suppress_raw_output = FALSE, a list containing the test statistic, the 1-alpha quantile of the
limiting distribution, and the p-value computed from the specified hypothesis test. Also prints
output containing a short description of the test, the p-value, and additional information about the
test if suppress_print_output = FALSE.

References

[1] Gabrys R., & Kokoszka P. (2007). Portmanteau Test of Independence for Functional Observa-
tions. Journal of the American Statistical Association, 102:480, 1338-1348, DOI: 10.1198/016214507000001111.
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Examples

b <- brown_motion(250, 100)
independence_test(b, components = 3, lag = 5)

multi_lag_test Multi-Lag Hypothesis Test

Description

‘multi_lag_test‘ Computes the multi-lag hypothesis test over a range of user-specified lags.

Usage

multi_lag_test(
f_data,
lag = 20,
M = NULL,
iid = FALSE,
alpha = 0.05,
suppress_raw_output = FALSE,
suppress_print_output = FALSE

)

Arguments

f_data the functional data matrix with observed functions in the columns

lag Positive integer value. The lag to use to compute the single lag test statistic

M Positive integer value. Number of Monte-Carlo simulation for Welch-Satterthwaite
approximation.

iid A Boolean value, FALSE by default. If given TRUE, the hypothesis test will use
a strong-white noise assumption (instead of a weak-white noise assumption).

alpha Numeric value between 0 and 1 specifying the significance level to be used in the
specified hypothesis test. The default value is 0.05. Note, the significance value
is only ever used to compute the 1-alpha quantile of the limiting distribution of
the specified test’s test statistic.

suppress_raw_output

Boolean value, FALSE by default. If TRUE, the function will not return the list
containing the p-value, quantile, and statistic.

suppress_print_output

Boolean value, FALSE by default. If TRUE, the function will not print any
output to the console.
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Details

The "multi-lag" portmanteau test is also based on the sample autocovariance function computed
from the functional data. This test assesses the cumulative significance of lagged autocovariance
operators, up to a user-selected maximum lag K. More specifically, it tests the null hypothesis that
the first K lag-h autocovariance operators (h going from 1 to K) is equal to 0. This test is designed
for stationary functional time-series, and is valid under conditional heteroscedasticity conditions.

Value

If suppress_raw_output = FALSE, a list containing the test statistic, the 1-alpha quantile of the
limiting distribution, and the p-value computed from the specified hypothesis test. Also prints
output containing a short description of the test, the p-value, and additional information about the
test if suppress_print_output = FALSE.

References

[1] Kokoszka P., & Rice G., & Shang H.L. (2017). Inference for the autocovariance of a functional
time series under conditional heteroscedasticity. Journal of Multivariate Analysis, 162, 32-50.

Examples

b <- brown_motion(150, 50)
multi_lag_test(b, lag = 5)
multi_lag_test(b, lag = 10, M = 50)

parzen_kernel Parzen Kernel Function

Description

‘parzen_kernel‘ Computes the Parzen kernel function at a given point value.

Usage

parzen_kernel(x)

Arguments

x the point value at which the kernel function is evaluated

Value

A scalar value; the value of the Parzen kernel function at the point value x.
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Q_WS_hyp_test Compute size alpha single-lag hypothesis test under weak or strong
white noise assumption

Description

‘Q_WS_hyp_test‘ Computes the size alpha test of a single lag hypothesis under a weak white noise
or strong white noise assumption using a Welch-Satterthwaite Approximation.

Usage

Q_WS_hyp_test(
f_data,
lag,
alpha = 0.05,
iid = FALSE,
M = NULL,
bootstrap = FALSE,
block_size = "adaptive",
straps = 300,
moving = FALSE

)

Arguments

f_data the functional data matrix with observed functions in the columns

lag the lag to use to compute the single lag test statistic

alpha the significance level to be used in the hypothesis test

iid boolean value, if given TRUE, the hypothesis test will use a strong-white noise
assumption. By default is FALSE, in which the hypothesis test will use a weak-
white noise assumption.

M Number of samples to take when applying a Monte-Carlo approximation

bootstrap boolean value, if given TRUE, the hypothesis test is done by approximating the
limiting distribution of the test statistic via a block bootstrap algorithm. FALSE
by default

block_size the block size to be used in the block bootstrap method (in each bootstrap sam-
ple). 10 by default.

straps the number of bootstrap samples to take; 300 by default

moving boolean value; determines whether or not the block bootstrap should be moving

Value

A list containing the p-value, the quantile, and a boolean value indicating whether or not the hy-
pothesis is rejected.
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scalar_covariance_i_j Compute the approximate covariance at a point for lag windows de-
fined by i,j

Description

‘scalar_covariance_i_j‘ Computes the approximate covariance at a point of the functional data for
lag windows defined by i,j; a scalarized version of covariance_i_j that takes point estimates.

Usage

scalar_covariance_i_j(f_data, i, j, times)

Arguments

f_data the functional data matrix with observed functions in the columns

i, j the indices i,j in 1:T that we are computing the covariance for

times A vector with 4 columns containing indices specifying which subset of f_data
to consider

Value

A numeric value; the covariance of the functional data at a point for lag windows defined by i,j.

scalar_covariance_i_j_vec

Compute the approximate covariance at a point for lag windows de-
fined by i,j

Description

‘scalar_covariance_i_j_vec‘ Computes the approximate covariance at a point of the functional data
for lag windows defined by i,j; a vectorized version of scalar_covariance_i_j.

Usage

scalar_covariance_i_j_vec(f_data, i, j, times)

Arguments

f_data the functional data matrix with observed functions in the columns

i, j the indices i,j in 1:T that we are computing the covariance for

times A vector with 4 columns containing indices specifying which subset of f_data
to consider
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Value

A numeric value; the covariance of the functional data at a point for lag windows defined by i,j.

single_lag_test Single-Lag Hypothesis Test

Description

‘single_lag_test‘ Computes the single-lag hypothesis test at a single user-specified lag.

Usage

single_lag_test(
f_data,
lag = 1,
alpha = 0.05,
iid = FALSE,
M = NULL,
bootstrap = FALSE,
block_size = "adaptive",
straps = 300,
moving = FALSE,
suppress_raw_output = FALSE,
suppress_print_output = FALSE

)

Arguments

f_data The functional data matrix with observed functions in the columns

lag Positive integer value. The lag to use to compute the single lag test statistic.

alpha Numeric value between 0 and 1 specifying the significance level to be used in the
specified hypothesis test. The default value is 0.05. Note, the significance value
is only ever used to compute the 1-alpha quantile of the limiting distribution of
the specified test’s test statistic.

iid A Boolean value, FALSE by default. If given TRUE, the hypothesis test will use
a strong-white noise assumption (instead of a weak-white noise assumption).

M Positive integer value. Number of Monte-Carlo simulations for the Welch-
Satterthwaite approximation.

bootstrap A Boolean value, FALSE by default If given TRUE, the hypothesis test is done
by approximating the limiting distribution of the test statistic via a block boot-
strap process.

block_size A positive Integer value, with the default value being computed via the adaptive
bandwidth selection method in the "spectral" test. Determines the block size (of
each block in each bootstrap sample) if the test is being bootstrapped.
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straps A positive Integer, with a default value of 300. Determines the number of boot-
strap samples to take if the test is being bootstrapped. Only used if ’bootstrap’
== TRUE.

moving A Boolean value, FALSE by default If given TRUE, the performed block boot-
strap will be moving rather than stationary.

suppress_raw_output

Boolean value, FALSE by default. If TRUE, the function will not return the list
containing the p-value, quantile, and statistic.

suppress_print_output

Boolean value, FALSE by default. If TRUE, the function will not print any
output to the console.

Details

The "single-lag" portmanteau test is based on the sample autocovariance function computed from
the functional data. This test assesses the significance of lagged autocovariance operators at a single,
user-specified lag h. More specifically, it tests the null hypothesis that the lag-h autocovariance
operator is equal to 0. This test is designed for stationary functional time-series, and is valid under
conditional heteroscedasticity conditions.

Value

If suppress_raw_output = FALSE, a list containing the test statistic, the 1-alpha quantile of the
limiting distribution, and the p-value computed from the specified hypothesis test. Also prints
output containing a short description of the test, the p-value, and additional information about the
test if suppress_print_output = FALSE.

References

[1] Kokoszka P., & Rice G., & Shang H.L. (2017). Inference for the autocovariance of a functional
time series under conditional heteroscedasticity. Journal of Multivariate Analysis, 162, 32-50.

Examples

f <- far_1_S(150, 50, S = 0.75)
single_lag_test(f, lag = 1)
single_lag_test(f, lag = 2, M=100)

spectral_test Spectral Density Test

Description

The "spectral" portmanteau test is based on the spectral density operator. It essentially measures the
proximity of a functional time series to a white noise - the constant spectral density operator of an
uncorrelated series. Unlike the "single-lag" and "multi-lag" tests, this test is not for general white
noise series, and may not hold under functional conditionally heteroscedastic assumptions.
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Usage

spectral_test(
f_data,
kernel = "Bartlett",
bandwidth = "adaptive",
alpha = 0.05,
suppress_raw_output = FALSE,
suppress_print_output = FALSE

)

Arguments

f_data The functional data matrix with observed functions in the columns
kernel A String specifying the kernel function to use. The currently supported kernels

are the ’Bartlett’ and ’Parzen’ kernels. The default kernel is ’Bartlett’.
bandwidth A String or positive Integer value which specifies the bandwidth to use. Cur-

rently admitted string handles are ’static’ which computes the bandwidth p via p
= n^(1/(2q+1)) where n is the sample size and q is the kernel order, or ’adaptive’
which uses a bandwidth selection method that is based on the functional data.

alpha Numeric value between 0 and 1 specifying the significance level to be used for
the test. The significance level is 0.05 by default. Note, the significance value
is only ever used to compute the 1-alpha quantile of the limiting distribution of
the specified test’s test statistic.

suppress_raw_output

Boolean value, FALSE by default. If TRUE, the function will not return the list
containing the p-value, quantile, and statistic.

suppress_print_output

Boolean value, FALSE by default. If TRUE, the function will not print any
output to the console.

Details

‘spectral_test‘ Computes the spectral hypothesis test under a user-specified kernel function and
bandwidth; automatic bandwidth selection methods are provided.

Value

If suppress_raw_output = FALSE, a list containing the test statistic, the 1-alpha quantile of the
limiting distribution, and the p-value computed from the specified hypothesis test. Also prints
output containing a short description of the test, the p-value, and additional information about the
test if suppress_print_output = FALSE.

References

[1] Characiejus V., & Rice G. (2019). A general white noise test based on kernel lag-window
estimates of the spectral density operator. Econometrics and Statistics, submitted.

[2] Chen W.W. & Deo R.S. (2004). Power transformations to induce normality and their applica-
tions. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 66, 117–130.
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Examples

b <- brown_motion(100, 50)
spectral_test(b)
spectral_test(b, kernel = 'Parzen', bandwidth = 'adaptive')
spectral_test(b, kernel = 'Bartlett', bandwidth = 2)
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