Welcome to the yaps
repository. The yaps
package is based on the original YAPS presented in Baktoft, Gjelland,
Økland & Thygesen (2017): Positioning
of aquatic animals based on time-of-arrival and random walk models using
YAPS (Yet Another Positioning Solver)
To use yaps
on own data, you need to compile a
TOA-matrix based on synchronized hydrophone data and replace the hydros
dataframe with actual hydrophone positions. A complete step-by-step
guide on how to do this, can be found in our pre-print paper Opening
the black box of fish tracking using acoustic telemetry. The example
in this guide is based on data collected using a 69 kHz PPM-based system
(Vemco VR2). We are working towards adding examples based on data
collected using other manufacturers.
The yaps
package requires devtools and TMB. Please see instructions on
TMB installation. If working on Windows, you might also need to install
Rtools as
specified in the TMB documentation.
yaps
obeys the fundamental rule of “garbage in,
garbage out”. Therefore, DO NOT expect yaps
to salvage a
poorly designed study, nor to turn crappy data into gold.
We have attempted to make both synchronization process and track
estimation user-friendly. However, it is not trivial to synchronize
hydrophones (let alone automating the process) based on detections in a
variable and often noisy environment. Hydrophones might be
replaced/shifted and if not fixed securely, hydrophones might move/be
moved during a study. Additionally, hydrophone performance and output
format varies considerably among (and within) manufacturers. On top of
that, hydrophones don’t always behave and perform as expected. For
instance, some hydrophone models autonomously initiate reboots causing
perturbation of varying magnitude and/or duration of the internal clock
at apparently random time intervals. Therefore, the functions in
yaps
might perform sub-optimal or even fail miserably when
applied to new data. If/when this happens, please let us know through a
direct message or leave a bug-report. Also note, the to-do list for
improvements and tweaks is long and growing, so stay tuned for
updates.
Make sure you have the newest version of yaps
installed.
Run install.packages('yaps')
to get the latest version on
CRAN.
The code below is based on the example workflow presented in Opening the black box of fish tracking using acoustic telemetry. See the pre-print for further explantion of parameters and workflow.
library(yaps)
set.seed(42) # Just to keep consistency in this example
# # # Example using the ssu1 data included in package. See ?ssu1 for info.
# # # Set parameters to use in the sync model - these will differ per study
<- 120
max_epo_diff <- 2
min_hydros <- 5
time_keeper_idx <- c(2:3, 6, 8, 11, 13:17)
fixed_hydros_idx <- 2
n_offset_day <- 2
n_ss_day <- 20
keep_rate
# # # Get input data ready for getSyncModel()
<- getInpSync(sync_dat=ssu1, max_epo_diff, min_hydros, time_keeper_idx,
inp_sync keep_rate=keep_rate, silent_check=TRUE)
fixed_hydros_idx, n_offset_day, n_ss_day,
# # # Check that inp_sync is ok
checkInpSync(inp_sync, silent_check=FALSE)
# # # Also take a look at coverage of the sync data
getSyncCoverage(inp_sync, plot=TRUE)
# # # Fit the sync model
<- getSyncModel(inp_sync, silent=TRUE, max_iter=200, tmb_smartsearch = TRUE)
sync_model
# # # On some systems it might work better, if we disbale the smartsearch feature in TMB
# # # To do so, set tmb_smartsearch = FALSE in getSyncModel()
# # # Visualize the resulting sync model
plotSyncModelResids(sync_model, by = "overall")
plotSyncModelResids(sync_model, by = "quantiles")
plotSyncModelResids(sync_model, by = "sync_tag")
plotSyncModelResids(sync_model, by = "hydro")
plotSyncModelResids(sync_model, by = "temporal_hydro")
plotSyncModelResids(sync_model, by = "temporal_sync_tag")
# # # If the above plots show outliers, sync_model can be fine tuned by excluding these.
# # # Use fineTuneSyncModel() for this.
# # # This should typically be done sequentially using eps_thresholds of e.g. 1E4, 1E3, 1E2, 1E2
<- fineTuneSyncModel(sync_model, eps_threshold=1E3, silent=TRUE)
sync_model <- fineTuneSyncModel(sync_model, eps_threshold=1E2, silent=TRUE)
sync_model
# # # Apply the sync_model to detections data.
<- applySync(toa=ssu1$detections, hydros=ssu1$hydros, sync_model)
detections_synced
# # # Prepare data for running yaps
<- data.table::data.table(sync_model$pl$TRUE_H)
hydros_yaps colnames(hydros_yaps) <- c('hx','hy','hz')
<- 15266
focal_tag <- 20
rbi_min <- 40
rbi_max <- detections_synced[tag == focal_tag]
synced_dat <- getToaYaps(synced_dat=synced_dat, hydros=hydros_yaps, pingType='rbi',
toa rbi_min=rbi_min, rbi_max=rbi_max)
<- getBbox(hydros_yaps, buffer=50, pen=1e6)
bbox <- getInp(hydros_yaps, toa, E_dist="Mixture", n_ss=5, pingType="rbi",
inp sdInits=1, rbi_min=rbi_min, rbi_max=rbi_max, ss_data_what="est", ss_data=0, bbox=bbox)
# # # Check that inp is ok
checkInp(inp)
# # # Run yaps on the prepared data to estimate track
<- runYaps(inp, silent=TRUE, tmb_smartsearch=TRUE, maxIter=5000)
yaps_out
# # # Plot the results and compare to "the truth" obtained using gps
<- par(no.readonly = TRUE)
oldpar par(mfrow=c(2,2))
plot(hy~hx, data=hydros_yaps, asp=1, xlab="UTM X", ylab="UTM Y", pch=20, col="green")
lines(utm_y~utm_x, data=ssu1$gps, col="blue", lwd=2)
lines(y~x, data=yaps_out$track, col="red")
plot(utm_x~ts, data=ssu1$gps, col="blue", type="l", lwd=2)
points(x~top, data=yaps_out$track, col="red")
lines(x~top, data=yaps_out$track, col="red")
lines(x-2*x_sd~top, data=yaps_out$track, col="red", lty=2)
lines(x+2*x_sd~top, data=yaps_out$track, col="red", lty=2)
plot(utm_y~ts, data=ssu1$gps, col="blue", type="l", lwd=2)
points(y~top, data=yaps_out$track, col="red")
lines(y~top, data=yaps_out$track, col="red")
lines(y-2*y_sd~top, data=yaps_out$track, col="red", lty=2)
lines(y+2*y_sd~top, data=yaps_out$track, col="red", lty=2)
plot(nobs~top, data=yaps_out$track, type="p", main="#detecting hydros per ping")
lines(caTools::runmean(nobs, k=10)~top, data=yaps_out$track, col="orange", lwd=2)
par(oldpar)
rm(list=ls())
library(yaps)
# Simulate true track of animal movement of n seconds
<- simTrueTrack(model='crw', n = 15000, deltaTime=1, shape=1, scale=0.5, addDielPattern=TRUE, ss='rw')
trueTrack
# Simulate telemetry observations from true track.
# Format and parameters depend on type of transmitter burst interval (BI) - stable (sbi) or random (rbi).
<- 'sbi'
pingType
if(pingType == 'sbi') { # stable BI
<- 30; sbi_sd <- 1e-4;
sbi_mean <- simTelemetryTrack(trueTrack, pingType=pingType, sbi_mean=sbi_mean, sbi_sd=sbi_sd)
teleTrack else if(pingType == 'rbi'){ # random BI
} <- 'rbi'; rbi_min <- 20; rbi_max <- 40;
pingType <- simTelemetryTrack(trueTrack, pingType=pingType, rbi_min=rbi_min, rbi_max=rbi_max)
teleTrack
}
# Simulate hydrophone array
<- simHydros(auto=TRUE, trueTrack=trueTrack)
hydros <- simToa(teleTrack, hydros, pingType, sigmaToa=1e-4, pNA=0.25, pMP=0.01)
toa_list <- toa_list$toa
toa
# Specify whether to use ss_data from measured water temperature (ss_data_what <- 'data') or to estimate ss in the model (ss_data_what <- 'est')
<- 'data'
ss_data_what if(ss_data_what == 'data') {ss_data <- teleTrack$ss} else {ss_data <- 0}
if(pingType == 'sbi'){
<- getInp(hydros, toa, E_dist="Mixture", n_ss=10, pingType=pingType, sdInits=0, ss_data_what=ss_data_what, ss_data=ss_data)
inp else if(pingType == 'rbi'){
} <- getInp(hydros, toa, E_dist="Mixture", n_ss=10, pingType=pingType, sdInits=0, rbi_min=rbi_min, rbi_max=rbi_max, ss_data_what=ss_data_what, ss_data=ss_data)
inp
} str(inp)
<- c()
yaps_out <- ifelse(pingType=="sbi", 500, 5000)
maxIter <- runTmb(inp, maxIter=maxIter, getPlsd=TRUE, getRep=TRUE)
yaps_out str(yaps_out)
# Estimates in pl
<- yaps_out$pl
pl # Correcting for hydrophone centering
$X <- yaps_out$pl$X + inp$inp_params$Hx0
pl$Y <- yaps_out$pl$Y + inp$inp_params$Hy0
pl
# Error estimates in plsd
<- yaps_out$plsd
plsd
# plot the resulting estimated track and the true simulated track
par(mfrow=c(2,2))
plot(hy~hx, data=hydros, asp=1, xlab="UTM X", ylab="UTM Y", pch=20, col="green")
lines(y~x, data=trueTrack, col="blue", lwd=2)
lines(y~x, data=yaps_out$track, col="red")
plot(x~time, data=trueTrack, col="blue", type="l", lwd=2)
points(x~top, data=yaps_out$track, col="red")
lines(x~top, data=yaps_out$track, col="red")
lines(x-2*x_sd~top, data=yaps_out$track, col="red", lty=2)
lines(x+2*x_sd~top, data=yaps_out$track, col="red", lty=2)
plot(y~time, data=trueTrack, col="blue", type="l", lwd=2)
points(y~top, data=yaps_out$track, col="red")
lines(y~top, data=yaps_out$track, col="red")
lines(y-2*y_sd~top, data=yaps_out$track, col="red", lty=2)
lines(y+2*y_sd~top, data=yaps_out$track, col="red", lty=2)
plot(nobs~top, data=yaps_out$track, type="p", main="#detecting hydros per ping")
lines(caTools::runmean(nobs, k=10)~top, data=yaps_out$track, col="orange", lwd=2)
Baktoft, H., Gjelland, K., Szabo-Meszaros, M. et al (2020). Can energy depletion of wild atlantic salmon kelts negotiating hydropower facilities lead to reduced survival? Sustain. 12, 1–12. https://doi.org/10.3390/SU12187341
Hubert, J., Campbell, J. & Slabbekoorn, H. (2020). Effects of seismic airgun playbacks on swimming patterns and behavioural states of Atlantic cod in a net pen. Marine Pollution Bulletin. 160.
Vergeynst, J., Pauwels, I., Baeyens, R. et al. (2020). Shipping canals on the downstream migration route of European eel ( Anguilla anguilla ): Opportunity or bottleneck?. Ecology of Freshwater Fish. 30. https://doi.org/10.1111/eff.12565
Vergeynst, J., Vanwyck, T., Baeyens, R. et al. (2020). Acoustic positioning in a reflective environment: going beyond point-by-point algorithms. Anim Biotelemetry 8, 16. https://doi.org/10.1186/s40317-020-00203-1
Vergeynst, J., Baktoft, H., Mouton, A. et al. (2020). The influence of system settings on positioning accuracy in acoustic telemetry, using the YAPS algorithm. Anim. Biotelemetry, 8, 1–12, https://doi.org/10.1186/s40317-020-00211-1
Baktoft, H., Gjelland, K.Ø., Økland, F., Rehage, J.S., Rodemann, J.R., Corujo, R.S., Viadero, N., Thygesen, U.H. (2019). Opening the black box of fish tracking using acoustic telemetry. bioRxiv 2019.12.16.877688; doi: https://doi.org/10.1101/2019.12.16.877688
Silva, A.T., Bærum, K.M., Hedger, R.D., Baktoft, H., Fjeldstad, H., Gjelland, K.Ø., Økland, F. Forseth, T. (2019). Science of the Total Environment The effects of hydrodynamics on the three-dimensional downstream migratory movement of Atlantic salmon. Science of the Total Environment, 135773. https://doi.org/10.1016/j.scitotenv.2019.135773
Szabo-Meszaros, M., Forseth, T., Baktoft, H., Fjeldstad, H.-P., Silva, A.T., Gjelland, K.Ø., Økland, F., Uglem, I., Alfredsen, K. (2019). Modelling mitigation measures for smolt migration at dammed river sections. Ecohydrology, e2131. https://doi.org/10.1002/eco.2131