Package ‘ympes’

January 5, 2023
Type Package

Title Collection of Helper Functions
Version 0.3.0

Description Provides a collection of lightweight helper functions (imps) both
for interactive use and for inclusion within other packages. These include
minimal assertion functions with a focus on informative error messaging for
both missing and incorrect function arguments as well as other functions for
visualising colour palettes, quoting user input and working with age
intervals.

License GPL-2

Encoding UTF-8

RoxygenNote 7.2.3

Suggests clipr, knitr, rmarkdown, tinytest
Depends R (>=3.5.0)

LazyData true

VignetteBuilder knitr

URL https://timtaylor.github.io/ympes/

BugReports https://github.com/TimTaylor/ympes/issues

NeedsCompilation yes

Author Tim Taylor [aut, cre, cph] (<https://orcid.org/0000-0002-8587-7113>)
Maintainer Tim Taylor <tim.taylor@hiddenelephants.co.uk>

Repository CRAN

Date/Publication 2023-01-05 21:50:06 UTC

R topics documented:

ageutils . . . Lo e
ASSEITIONS . . . v v o e e e e e e e
CC o e e e e e

https://timtaylor.github.io/ympes/
https://github.com/TimTaylor/ympes/issues
https://orcid.org/0000-0002-8587-7113

2 ageutils

GIEPIOWS . . v o v v e i e 7
plot_palette L 9
pop_dato e 10
Index 11
ageutils Utilities for Age Intervals
Description

This help page documents the utility functions provided for working with age intervals:

breaks_to_interval() takes a specified set of breaks representing the left hand limits of a closed
open interval, i.e [X, y), and returns the corresponding interval and upper bounds. The resulting
intervals span from the minimum break through to Inf.

cut_ages() provides categorisation of ages based on specified breaks which represent the left-hand
interval limits. The resultant groupings will span from the minimum break through to Inf and will
always be closed on the left and open on the right. Ages below the minimum break will be returned
as NA. As an example, if breaks = c(@, 1, 10, 30) the possible groupings would be [0, 1), [1, 10),
[10, 30) and [30, Inf). This is roughly comparable to a call of cut (ages, right = FALSE, breaks =
c(limits, Inf)) but with both the resultant interval and the start and end points returned as entries
in a list.

split_interval_counts() splits counts of a given age interval in to counts for individual years
based on a given weighting. Age intervals are specified by their lower (closed) and upper (open)
bounds, i.e. intervals of the form [lower, upper).

aggregate_age_counts() provides aggregation of counts across ages (in years). It is similar to
a cut() and tapply() pattern but optimised for speed over flexibility. Groupings are the same
as in ages_to_interval() and counts will be provided across all natural numbers grater than the
minimum break. Missing values, and those less than the minimum break, are grouped as NA.

reaggregate_interval_counts() is equivalent to, but more efficient than, a call to split_interval_counts()
followed by aggregate_age_counts().

Usage

breaks_to_interval (breaks)
cut_ages(ages, breaks)

split_interval_counts(
lower_bounds,
upper_bounds,
counts,
max_upper = 100L,
weights = NULL

ageutils

aggregate_age_counts(counts, ages = 0:(length(counts) - 1L), breaks)

reaggregate_interval_counts(

lower_bounds,
upper_bounds,

counts,
breaks,

max_upper = 100L,
weights = NULL

Arguments

breaks

ages

[numeric].

1 or more non-negative cut points in increasing (strictly) order.

These correspond to the left hand side of the desired intervals (e.g. the closed
side of "[x, y)".

Double values are coerced to integer prior to categorisation.

[numeric].

Vector of age in years.

Double values are coerced to integer prior to categorisation / aggregation.

For aggregate_age_counts(), these must corresponding to the counts entry
and will defaults to 0:(N-1) where N is the number of counts present.

ages >= 200 are not permitted due to the internal implementation.

lower_bounds, upper_bounds

counts

max_upper

weights

[integerish].
A pair of vectors representing the bounds of the intervals.

lower_bounds must be strictly less than upper_bounds and greater than or
equal to zero.

Missing (NA) bounds are not permitted.

Double vectors will be coerced to integer.

Cnumeric].

Vector of counts to be aggregated.

[integerish]

Represents the maximum upper bounds permitted upon splitting the data.
Used to replace Inf upper bounds prior to splitting.

If any upper_bound is greater than max_upper the function will error.
Double vectors will be coerced to integer.

[numeric]

Population weightings to apply for individual years.

If NULL (default) counts will be split evenly based on interval size.

If specified, must be of length max_upper and represent weights in the range
0:(max_upper - 1).

4 assertions

Value

breaks_to_interval(), cut_ages():

A data frame with an ordered factor column (interval), as well as columns corresponding to the
explicit bounds (lower_bound and upper_bound).

split_interval_counts():
A data frame with entries age (in years) and count.
aggregate_age_counts() and reaggregate_interval_counts():

A data frame with 4 entries; interval, lower_bound, upper_bound and an associated count.

Examples

cut_ages(ages = 0:9, breaks = c(oL, 3L, 5L, 10L))
cut_ages(ages = 0:9, breaks = 5L)

split_interval_counts(
lower_bounds = c(@, 5, 10),
upper_bounds = c(5, 10, 20),
counts = c(5, 10, 30)

)

default ages generated if only counts provided (here ages will be 0:64)
aggregate_age_counts(counts = 1:65, breaks = c(oL, 1L, 5L, 15L, 25L, 45L, 65L))
aggregate_age_counts(counts = 1:65, breaks = 50L)

NA ages are handled with their own grouping
ages <- 1:65;
ages[1:44] <- NA
aggregate_age_counts(
counts = 1:65,
ages = ages,
breaks = c(oL, 1L, 5L, 15L, 25L, 45L, 65L)

reaggregate_interval_counts(
lower_bounds = c(@, 5, 10),
upper_bounds = c(5, 10, 20),
counts = c(5, 10, 30),
breaks = c(oL, 1L, 5L, 15L, 25L, 45L, 65L)

assertions Argument assertions

assertions 5

Description

Assertions for function arguments. Motivated by vctrs: :vec_assert() but with lower overhead
at a cost of less informative error messages. Designed to make it easy to identify the top level
calling function whether used within a user facing function or internally.

Usage

assert_integer(x, arg = deparse(substitute(x)), call = sys.call(-1L))
assert_int(x, arg = deparse(substitute(x)), call = sys.call(-1L))
assert_double(x, arg = deparse(substitute(x)), call = sys.call(-1L))
assert_dbl(x, arg = deparse(substitute(x)), call = sys.call(-1L))
assert_numeric(x, arg = deparse(substitute(x)), call = sys.call(-1L))
assert_num(x, arg = deparse(substitute(x)), call = sys.call(-1L))
assert_logical(x, arg = deparse(substitute(x)), call = sys.call(-1L))
assert_lgl(x, arg = deparse(substitute(x)), call = sys.call(-1L))
assert_character(x, arg = deparse(substitute(x)), call = sys.call(-1L))
assert_chr(x, arg = deparse(substitute(x)), call = sys.call(-1L))
assert_data_frame(x, arg = deparse(substitute(x)), call = sys.call(-1L))
assert_list(x, arg = deparse(substitute(x)), call = sys.call(-1L))
assert_scalar_integer(x, arg = deparse(substitute(x)), call = sys.call(-1L))
assert_scalar_int(x, arg = deparse(substitute(x)), call = sys.call(-1L))
assert_scalar_double(x, arg = deparse(substitute(x)), call = sys.call(-1L))
assert_scalar_dbl(x, arg = deparse(substitute(x)), call = sys.call(-1L))
assert_scalar_numeric(x, arg = deparse(substitute(x)), call = sys.call(-1L))
assert_scalar_num(x, arg = deparse(substitute(x)), call = sys.call(-1L))
assert_scalar_logical(x, arg = deparse(substitute(x)), call = sys.call(-1L))
assert_scalar_lgl(x, arg = deparse(substitute(x)), call = sys.call(-1L))

assert_bool(x, arg = deparse(substitute(x)), call = sys.call(-1L))

6 assertions

assert_boolean(x, arg = deparse(substitute(x)), call = sys.call(-1L))
assert_scalar_character(x, arg = deparse(substitute(x)), call = sys.call(-1L))
assert_scalar_chr(x, arg = deparse(substitute(x)), call = sys.call(-1L))

assert_string(x, arg = deparse(substitute(x)), call = sys.call(-1L))

Arguments
X Argument to check.
arg [character]

Name of argument being checked (used in error message).
call [call]

Call to use in error message.

Value

NULL if the assertion succeeds (error otherwise).

Examples

Use in a user facing function

fun <- function(i, d, 1, chr, b) {
assert_scalar_int(i)
TRUE

}

fun(i=1L)

try(fun())

try(fun(i="cat"))

Use in an internal function

internal_fun <- function(a) {
assert_string(a, arg = deparse(substitute(a)), call = sys.call(-1L))
TRUE

3

external_fun <- function(b) {
internal_fun(a=b)

3

external_fun(b="cat")

try(external_fun())

try(external_fun(b = letters))

cc 7

cc Quote names

Description

cc() quotes comma separated names whilst trimming outer whitespace. It is intended for interactive
use only.

Usage

cc(..., .clip = getOption("imp.clipboard”, FALSE))

Arguments

Unquoted names (separated by commas) that you wish to quote.
Empty arguments (e.g. third item in one, two, , four) will be returned as "".
.clip [bool]

Should the code to generate the constructed character vector be copied to your
system clipboard.

Defaults to FALSE unless the option "imp.clipboard" is set to TRUE.
Note that copying to clipboard requires the availability of package clipr.

Value

A character vector of the quoted input.

Examples

cc(dale, audrey, laura, hawk)

greprows Pattern matching on data frame rows

Description

greprows () searches for pattern matches within a data frames columns and returns the related rows
or row indices.

https://cran.r-project.org/package=clipr

Usage

greprows(
dat,
pattern,
cols = NULL,
value = TRUE,

ignore.case =

perl = FALSE,

greprows

FALSE,

fixed = FALSE,
invert = FALSE

Arguments

dat

pattern

cols

value

ignore.case

perl
fixed

invert

Value

Data frame

character string containing a regular expression (or character string for fixed =
TRUE) to be matched in the given character vector. Coerced by as.character
to a character string if possible. If a character vector of length 2 or more is
supplied, the first element is used with a warning. Missing values are allowed
except for regexpr, gregexpr and regexec.

[character]

Character vector of columns to search.

If NULL (default) all character and factor columns will be searched.

[logicall

Should a data frame of rows be returned.

If FALSE row indices will be returned instead of the rows themselves.

if FALSE, the pattern matching is case sensitive and if TRUE, case is ignored
during matching.

logical. Should Perl-compatible regexps be used?

logical. If TRUE, pattern is a string to be matched as is. Overrides all conflicting
arguments.

logical. If TRUE return indices or values for elements that do not match.

A data frame of the corresponding rows or, if value = FALSE, the corresponding row numbers.

See Also

grep

Examples

dat <- data.frame(
first = letters,
second = factor(rev(LETTERS)),

plot_palette

third = "Q"
)
greprows(dat, "Alb")
greprows(dat, "A|b", ignore.case = TRUE)

n_n

greprows(dat, "c", value = FALSE)

plot_palette Plot a colour palette

Description

plot_palette() plots a palette from a vector of colour values (name or hex).

Usage

plot_palette(values, label = TRUE, square = FALSE)

Arguments

values [character]
Vector of named or hex colours.

label [bool]
Do you want to label the plot or not?

If values is a named vector the names are used for labels, otherwise, the values.

square [bool]
Display palette as square?

Value

The input (invisibly).

Examples

plot_palette(c("#5FE756", "red", "black"))
plot_palette(c("#5FE756", "red”, "black"), square=TRUE)

10 pop_dat

pop_dat Aggregated population data

Description

A dataset derived from the 2021 UK census containing population for different age categories across
England and Wales.

Usage

pop_dat

Format
A data frame with 200 rows and 6 variables:
area_code Unique area identifier
area_name Unique area name
age_category Left-closed and right-open age interval

value count of individ

Source

https://github.com/TimTaylor/census_pop_2021

https://github.com/TimTaylor/census_pop_2021

Index

x datasets pop_dat, 10
pop_dat, 10
reaggregate_interval_counts (ageutils),
ageutils, 2 2
aggregate_age_counts (ageutils), 2 regular expression, 8
as.character, 8
assert_bool (assertions), 4 split_interval_counts (ageutils), 2

assert_boolean (assertions), 4
assert_character (assertions), 4
assert_chr (assertions), 4
assert_data_frame (assertions), 4
assert_dbl (assertions), 4
assert_double (assertions), 4
assert_int (assertions), 4
assert_integer (assertions), 4
assert_lgl (assertions), 4
assert_list (assertions), 4
assert_logical (assertions), 4
assert_num (assertions), 4
assert_numeric (assertions), 4
assert_scalar_character (assertions), 4
assert_scalar_chr (assertions), 4
assert_scalar_dbl (assertions), 4
assert_scalar_double (assertions), 4
assert_scalar_int (assertions), 4
assert_scalar_integer (assertions), 4
assert_scalar_lgl (assertions), 4
assert_scalar_logical (assertions), 4
assert_scalar_num (assertions), 4
assert_scalar_numeric (assertions), 4
assert_string (assertions), 4
assertions, 4

breaks_to_interval (ageutils), 2

cc,7
cut_ages (ageutils), 2

greprows, 7

plot_palette, 9

11

	ageutils
	assertions
	cc
	greprows
	plot_palette
	pop_dat
	Index

