Package 'zcurve'

January 5, 2023

```
Title An Implementation of Z-Curves
```

Version 2.3.0

Maintainer František Bartoš < f.bartos 96@gmail.com>

Description An implementation of z-curves - a method for estimating expected discovery and replicability rates on the bases of test-statistics of published studies. The package provides functions for fitting the new density and EM version

(Bartoš & Schimmack, 2020, <doi:10.31234/osf.io/urgtn>), censored observations, as well as the original density z-

curve (Brunner & Schimmack, 2020, <doi:10.15626/MP.2018.874>).

Furthermore, the package provides summarizing and plotting functions for the fitted z-curve objects.

See the aforementioned articles for more information about the z-curves, expected discovery and replicability rates, validation studies, and limitations.

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Imports Rcpp (>= 1.0.2), nleqslv, stats, evmix, graphics, Rdpack

LinkingTo Rcpp

Suggests parallel, spelling, testthat, vdiffr

Language en-US

RdMacros Rdpack

URL https://fbartos.github.io/zcurve/

NeedsCompilation yes

Author František Bartoš [aut, cre], Ulrich Schimmack [aut]

Repository CRAN

Date/Publication 2023-01-05 21:50:02 UTC

2 control_density

R topics documented:

Index		19
	z_to_power	18
	zcurve_options	
	zcurve_data	16
	zcurve_clustered	15
	zcurve.estimates	14
	zcurve	
	summary.zcurve	
	print.zcurve_data	
	print.zcurve	
	print.summary.zcurve	
	power_to_z	
	plot.zcurve	
	OSC.z	
	is.zcurve	
	head.zcurve_data	
	control_EM	5
	control_density_v1	4
	control_density	2

control_density

Control settings for the z-curve 2.0 density algorithm

Description

All settings are passed to the density fitting algorithm. All unspecified settings are set to the default value. Setting model = "KD2" sets all settings to the default value irrespective of any other setting and fits z-curve as describe in Bartoš and Schimmack (2020). In order to fit the z-curve 1.0 density algorithm, set model = "KD1" and go to control_density_v1

Arguments

version	Which version of z-curve should be fitted. Defaults to 2 = z-curve 2.0. Set to 1 in order to fit the original version of z-curve. For its settings page go to control_density_v1.
model	A type of model to be fitted, defaults to "KD2" (another possibility is "KD1" for the original z-curve 1.0, see control_density_v1 for its settings)
sig_level	An alpha level of the test statistics, defaults to .05
a	A beginning of fitting interval, defaults to qnorm(sig_level/2,lower.tail = F)
b	An end of fitting interval, defaults to 6
mu	Means of the components, defaults to seq(0,6,1)

control_density 3

sigma	A standard deviation of the components, "Don't touch this" $\$ Ulrich Schimmack, defaults to 1	
theta_min	Lower limits for weights, defaults to rep(0,length(mu))	
theta_max	Upper limits for weights, defaults to rep(1,length(mu))	
max_iter	A maximum number of iterations for the $nlminb$ optimization for fitting mixture model, defaults to 150	
max_eval	A maximum number of evaluation for the $nlminb$ optimization for fitting mixture model, defaults to 1000	
criterion	A criterion to terminate nlminb optimization, defaults to 1e-03	
bw	A bandwidth of the kernel density estimation, defaults to .10	
aug	Augment truncated kernel density, defaults to TRUE	
aug.bw	A bandwidth of the augmentation, defaults to .20	
n.bars	A resolution of density function, defaults to 512	
density_dbc	Use bckden to estimate a truncated kernel density, defaults to FALSE, in which case density is used	
compute_FDR	Whether to compute FDR, leads to noticeable increase in computation, defaults to FALSE	
criterion_FDR	A criterion for estimating the maximum FDR, defaults to .02	
criterion_FDR_dbc		
	A criterion for estimating the maximum FDR using the bckden function, defaults to $.01$	
precision_FDR	A maximum FDR precision, defaults to .05	

References

Bartoš F, Schimmack U (2020). "Z-curve. 2.0: Estimating Replication Rates and Discovery Rates." doi:10.31219/osf.io/wr93f, submitted for publication.

See Also

```
zcurve(), control_density_v1, control_EM
```

```
# to decrease the criterion and increase the number of iterations
ctrl <- list(
   max_iter = 300,
   criterion = 1e-4
)
zcurve(OSC.z, method = "density", control = ctrl)</pre>
```

4 control_density_v1

control_density_v1

Control settings for the original z-curve density algorithm

Description

All settings are passed to the density fitting algorithm. All unspecified settings are set to the default value. Setting model = "KD1" sets all settings to the default value irrespective of any other setting and fits z-curve as described in Brunner and Schimmack (2020).

Arguments

version	Set to 1 to fit the original version of z-curve. Defaults to 2 = the updated version of z-curve. For its settings page go to control_density.
model	A type of model to be fitted, defaults to "KD1" (the only possibility)
sig_level	An alpha level of the test statistics, defaults to .05
a	A beginning of fitting interval, defaults to qnorm(sig_level/2,lower.tail = F)
b	An end of fitting interval, defaults to 6
K	Number of mixture components, defaults to 3
max_iter	A maximum number of iterations for the nlminb optimization for fitting mixture model, defaults to 150
max_eval	A maximum number of evaluation for the nlminb optimization for fitting mixture model, defaults to 300
criterion	A criterion to terminate nlminb optimization, defaults to 1e-10
bw	A bandwidth of the kernel density estimation, defaults to "nrd0"

References

Brunner J, Schimmack U (2020). "Estimating population mean power under conditions of heterogeneity and selection for significance." *Meta-Psychology*, **4**. doi:10.15626/MP.2018.874.

See Also

```
zcurve(), control_density, control_EM
```

```
# to increase the number of iterations
ctrl <- list(
   version = 1,
   max_iter = 300
)
zcurve(OSC.z, method = "density", control = ctrl)</pre>
```

control_EM 5

control_EM Control settings for the zcurve EM algorithm	control_EM	Control settings for the zcurve EM algorithm	
---	------------	--	--

Description

All these settings are passed to the Expectation Maximization fitting algorithm. All unspecified settings are set to the default value. Setting model = "EM" sets all settings to the default value irrespective of any other setting and fits z-curve as described in Bartoš and Schimmack (2020)

Arguments

model	A type of model to be fitted, defaults to "EM" for a z-curve with 7 z-scores centered components.
sig_level	An alpha level of the test statistics, defaults to .05
a	A beginning of fitting interval, defaults to qnorm(sig_level/2,lower.tail = F)
b	An end of fitting interval, defaults to 5
mu	Means of the components, defaults to 0:6
sigma	A standard deviation of the components, defaults to rep(1, length(mu))
theta_alpha	A vector of alpha parameters of a Dirichlet distribution for generating random starting values for the weights, defaults to rep(.5, length(mu))
theta_max	Upper limits for weights, defaults to rep(1,length(mu))
criterion	A criterion to terminate the EM algorithm, defaults to 1e-6
criterion_start	
	A criterion to terminate the starting phase of the EM algorithm, defaults to 1e-3
criterion_boot	A criterion to terminate the bootstrapping phase of the EM algorithm, defaults to 1e-5
max_iter	A maximum number of iterations of the EM algorithm (not including the starting iterations) defaults to 10000 $$
max_iter_start	A maximum number of iterations for the starting phase of EM algorithm, defaults to 100
max_iter_boot	A maximum number of iterations for the booting phase of EM algorithm, defaults to 100
fit_reps	A number of starting fits to get the initial position for the EM algorithm, defaults to 100

References

Bartoš F, Schimmack U (2020). "Z-curve. 2.0: Estimating Replication Rates and Discovery Rates." doi:10.31219/osf.io/wr93f, submitted for publication.

See Also

zcurve(), control_density

6 is.zcurve

Examples

```
# to increase the number of starting fits
# and change the means of the mixture components

ctrl <- list(
   fit_reps = 50,
   mu = c(0, 1.5, 3, 4.5, 6)
)
zcurve(OSC.z, method = "EM", control = ctrl)</pre>
```

head.zcurve_data

Prints first few rows of a z-curve data object

Description

Prints first few rows of a z-curve data object

Usage

```
## S3 method for class 'zcurve_data'
head(x, ...)
```

Arguments

x z-curve data object... Additional arguments

See Also

```
zcurve_data()
```

is.zcurve

Reports whether x is a zcurve object

Description

Reports whether x is a zcurve object

Usage

```
is.zcurve(x)
```

Arguments

x an object to test

OSC.z

OSC.z

Z-scores from subset of original studies featured in OSC 2015 reproducibility project

Description

The dataset contains z-scores from subset of original studies featured in psychology reproducibility project (Collaboration and others 2015). Only z-scores from studies with unambiguous original outcomes are supplied (eliminating 7 studies with marginally significant results). The real replication rate for those studies is 35/90 (the whole project reports 36/97).

Usage

OSC.z

Format

A vector with 90 observations

References

Collaboration OS, others (2015). "Estimating the reproducibility of psychological science." *Science*, **349**(6251). doi:10.1126/science.aac4716.

plot.zcurve

Plot fitted z-curve object

Description

Plot fitted z-curve object

```
## $3 method for class 'zcurve'
plot(
    x,
    annotation = FALSE,
    CI = FALSE,
    extrapolate = FALSE,
    y.anno = c(0.95, 0.88, 0.78, 0.71, 0.61, 0.53, 0.43, 0.35),
    x.anno = 0.6,
    cex.anno = 1,
    ...
)
```

8 power_to_z

Arguments

x Fitted z-curve object	
annotation Add annotation to the ple	ot. Defaults to FALSE.
CI Plot confidence intervals	for the estimated z-curve. Defaults to FALSE.
extrapolate Scale the chart to the ext	rapolated area. Defaults to FALSE.
	eight. Defaults to c(.95, .88, .78, .71, .61, .53,
x.anno A number specifying the figure's width.	e x-position of the block of annotations relative to the
figure's width.	e x-position of the block of annotations relative to the size of the annotation text.

See Also

zcurve()

Examples

```
# simulate some z-statistics and fit a z-curve
z <- abs(rnorm(300,3))
m.EM <- zcurve(z, method = "EM", bootstrap = 100)
# plot the z-curve
plot(m.EM)
# add annotation text and model fit CI
plot(m.EM, annotation = TRUE, CI = TRUE)
# change the location of the annotation to the left
plot(m.EM, annotation = TRUE, CI = TRUE, x_text = 0)</pre>
```

power_to_z

Compute z-score corresponding to a power

Description

A function for computing z-scores of two-sided tests corresponding to power power for a given significance level alpha alpha (or corresponding cut-off z-statistic a).

print.estimates.zcurve 9

Usage

```
power_to_z(
  power,
  alpha = 0.05,
  a = stats::qnorm(alpha/2, lower.tail = FALSE),
  two.sided = TRUE,
  nleqslv_control = list(xtol = 1e-15, maxit = 300, stepmax = 0.5)
)
```

Arguments

power A vector of powers

alpha Level of significance alpha

a Or, alternatively a z-score corresponding to alpha

two.sided Whether directionality of the effect size should be taken into account.

nleqslv_control

A named list of control parameters passed to the nleqslv function used for solving the inverse of z_{to} -power function.

Examples

```
# z-scores corresponding to the (aproximate) power of components of EM2 power_to_z(c(0.05, 0.20, 0.40, 0.60, 0.80, 0.974, 0.999), alpha = .05)
```

```
print.estimates.zcurve
```

Prints estimates from z-curve object

Description

Prints estimates from z-curve object

Usage

```
## S3 method for class 'zcurve'
print.estimates(x, ...)
```

Arguments

x Estimate of a z-curve object

... Additional arguments

See Also

```
zcurve()
```

10 print.zcurve

print.summary.zcurve Prints summary object for z-curve method

Description

Prints summary object for z-curve method

Usage

```
## S3 method for class 'zcurve'
print.summary(x, ...)
```

Arguments

Summary of a z-curve object Χ

Additional arguments

See Also

zcurve()

print.zcurve

Prints a fitted z-curve object

Description

Prints a fitted z-curve object

Usage

```
## S3 method for class 'zcurve'
print(x, ...)
```

Arguments

Fitted z-curve object Χ

Additional arguments

See Also

zcurve()

print.zcurve_data 11

print.zcurve_data

Prints a z-curve data object

Description

Prints a z-curve data object

Usage

```
## S3 method for class 'zcurve_data'
print(x, ...)
```

Arguments

x z-curve data object... Additional arguments

See Also

```
zcurve_data()
```

summary.zcurve

Summarize fitted z-curve object

Description

Summarize fitted z-curve object

```
## S3 method for class 'zcurve'
summary(
  object,
  type = "results",
  all = FALSE,
  ERR.adj = 0.03,
  EDR.adj = 0.05,
  round.coef = 3,
  ...
)
```

12 zcurve

Arguments

object	A fitted z-curve object.
type	Whether the results "results" or the mixture mode parameters "parameters" should be returned. Defaults to "results".
all	Whether additional results, such as file drawer ration, expected and missing number of studies, and Soric FDR be returned. Defaults to FALSE
ERR.adj	Confidence intervals adjustment for ERR. Defaults to .03 as proposed by Bartos & Schimmack (in preparation).
EDR.adj	Confidence intervals adjustment for EDR. Defaults to .05 as proposed by Bartos & Schimmack (in preparation).
round.coef	To how many decimals should the coefficient be rounded. Defaults to 3.
	Additional arguments

Value

Summary of a z-curve object

See Also

zcurve()

zcurve	Fit a z-curve	

Description

zcurve is used to fit z-curve models. The function takes input of z-statistics or two-sided p-values and returns object of class "zcurve" that can be further interrogated by summary and plot function. It default to EM model, but different version of z-curves can be specified using the method and control arguments. See 'Examples' and 'Details' for more information.

```
zcurve(
  z,
  z.lb,
  z.ub,
  p,
  p.lb,
  p.ub,
  data,
  method = "EM",
  bootstrap = 1000,
  parallel = FALSE,
  control = NULL
)
```

zcurve 13

Arguments

Z	a vector of z-scores.
z.lb	a vector with start of censoring intervals of censored z-scores.
z.ub	a vector with end of censoring intervals of censored z-scores.
p	a vector of two-sided p-values, internally transformed to z-scores.
p.lb	a vector with start of censoring intervals of censored two-sided p-values.
p.ub	a vector with end of censoring intervals of censored two-sided p-values.
data	an object created with zcurve_data() function.
method	the method to be used for fitting. Possible options are Expectation Maximization "EM" and density "density", defaults to "EM".
bootstrap	the number of bootstraps for estimating CI. To skip bootstrap specify FALSE.
parallel	whether the bootstrap should be performed in parallel. Defaults to FALSE. The implementation is not completely stable and might cause a connection error.
control	additional options for the fitting algorithm more details in control EM or control density.

Details

The function returns the EM method by default and changing method = "density" gives the KD2 version of z-curve as outlined in Bartoš and Schimmack (2020). For the original z-curve (Brunner and Schimmack 2020), referred to as KD1, specify 'control = "density", control = list(model = "KD1")'.

Value

The fitted z-curve object

References

Bartoš F, Schimmack U (2020). "Z-curve. 2.0: Estimating Replication Rates and Discovery Rates." doi:10.31219/osf.io/wr93f, submitted for publication.

Brunner J, Schimmack U (2020). "Estimating population mean power under conditions of heterogeneity and selection for significance." *Meta-Psychology*, **4**. doi:10.15626/MP.2018.874.

See Also

```
summary.zcurve(), plot.zcurve(), control_EM, control_density
```

```
# load data from OSC 2015 reproducibility project
OSC.z

# fit an EM z-curve (with disabled bootstrap due to examples times limits)
m.EM <- zcurve(OSC.z, method = "EM", bootstrap = FALSE)</pre>
```

14 zcurve.estimates

```
# a version with 1000 boostraped samples would looked like:
m.EM <- zcurve(OSC.z, method = "EM", bootstrap = 1000)</pre>
# or KD2 z-curve (use larger bootstrap for real inference)
m.D <- zcurve(OSC.z, method = "density", bootstrap = FALSE)</pre>
# inspect the results
summary(m.EM)
summary(m.D)
# see '?summary.zcurve' for more output options
# plot the results
plot(m.EM)
plot(m.D)
# see '?plot.zcurve' for more plotting options
# to specify more options, set the control arguments
# ei. increase the maximum number of iterations and change alpha level
ctr1 <- list(
  max_iter = 9999,
  "alpha" = .10
m1.EM <- zcurve(OSC.z, method = "EM", bootstrap = FALSE, control = ctr1)</pre>
# see '?control_EM' and '?control_density' for more information about different
# z-curves specifications
```

zcurve.estimates

z-curve estimates

Description

The following functions extract estimates from the z-curve object.

```
ERR(object, round.coef = 3)

EDR(object, round.coef = 3)

ODR(object, round.coef = 3)

Soric(object, round.coef = 3)

file_drawer_ration(object, round.coef = 3)

expected_n(object, round.coef = 0)

missing_n(object, round.coef = 0)
```

zcurve_clustered 15

```
significant_n(object)
included_n(object)
```

Arguments

object the z-curve object

round.coef rounding for the printed values

Details

Technically, ODR, significant n, and included n are not z-curve estimates but they are grouped in this category for convenience.

See Also

```
zcurve()
```

zcurve_clustered

Fit a z-curve to clustered data

Description

zcurve_clustered is used to fit z-curve models to clustered data. The function requires a data object created with the zcurve_data() function as the input (where id denotes clusters). Two different methods that account for clustering ar implemented via the EM model: "w" for down weighting the likelihood of the test statistics proportionately to the number of repetitions in the clusters, and "b" for a nested bootstrap where only a single study from each bootstrap is selected for model fitting.

Usage

```
zcurve_clustered(
  data,
  method = "b",
  bootstrap = 1000,
  parallel = FALSE,
  control = NULL
)
```

Arguments

data an object created with zcurve_data() function.

method the method to be used for fitting. Possible options are down weighting "w" and nested bootstrap "b". Defaults to "w".

bootstrap the number of bootstraps for estimating CI. To skip bootstrap specify FALSE.

parallel whether the bootstrap should be performed in parallel. Defaults to FALSE. The

implementation is not completely stable and might cause a connection error.

control additional options for the fitting algorithm more details in control EM.

16 zcurve_data

Value

The fitted z-curve object

References

There are no references for Rd macro \insertAllCites on this help page.

See Also

```
zcurve(), summary.zcurve(), plot.zcurve(), control_EM, control_density
```

zcurve_data

Prepare data for z-curve

Description

zcurve_data is used to prepare data for the zcurve() function. The function transform strings containing reported test statistics "z", "t", "f", "chi", "p" into two-sided p-values. Test statistics reported as inequalities are as considered to be censored as well as test statistics reported with low accuracy (i.e., rounded to too few decimals). See details for more information.

Usage

```
zcurve_data(data, id = NULL, rounded = TRUE, stat_precise = 2, p_precise = 3)
```

Arguments

data a vector strings containing the test statistics.

id a vector identifying observations from the same cluster.

rounded an optional argument specifying whether de-rounding should be applied. De-

faults to FALSE to treat all input as exact values or a numeric vector with values specifying precision of the input. The other option, FALSE, automatically extracts the number of decimals from input and treats the input as censored if it

does not surpass the stat_precise and the p_precise thresholds.

stat_precise an integer specifying the numerical precision of "z", "t", "f" statistics treated

as exact values.

p_precise an integer specifying the numerical precision of p-values treated as exact values.

Details

By default, the function extract the type of test statistic:

- "F(df1, df2)=x"F-statistic with df1 and df2 degrees of freedom,
- "chi(df)=x"Chi-square statistic with df degrees of freedom,
- "t(df)=x"for t-statistic with df degrees of freedom,

zcurve_options 17

- "z=x"for z-statistic,
- "p=x"for p-value.

The input is not case sensitive and automatically removes empty spaces. Furthermore, inequalities ("<" and ">") can be used to denote censoring. I.e., that the p-value is lower than "x" or that the test statistic is larger than "x" respectively. The automatic de-rounding procedure (if rounded = TRUE) treats p-values with less decimal places than specified in p_precise or test statistics with less decimal places than specified in stat_precise as censored on an interval that could result in a given rounded value. I.e., a "p = 0.03" input would be de-rounded as a p-value lower than 0.035 but larger than 0.025.

Value

An object of type "zcurve_data".

See Also

```
zcurve(), print.zcurve_data(), head.zcurve_data()
```

Examples

```
# Specify a character vector containing the test statistics
data <- c("z = 2.1", "t(34) = 2.21", "p < 0.03", "F(2,23) > 10", "p = 0.003")
# Obtain the z-curve data object
data <- zcurve_data(data)
# inspect the resulting object
data</pre>
```

zcurve_options

Options for the zcurve package

Description

A placeholder object and functions for the zcurve package. (adapted from the runjags R package).

Usage

```
zcurve.options(...)
zcurve.get_option(name)
```

Arguments

... named option(s) to change - for a list of available options, see details below.

the name of the option to get the current value of - for a list of available options, see details below.

z_to_power

Value

The current value of all available zcurve options (after applying any changes specified) is returned invisibly as a named list.

z_to_power

Compute power corresponding to z-scores

Description

A function for computing power of two-sided tests corresponding to z-scores for a given significance level. alpha (or corresponding cut-off z-score a)

Usage

```
z_to_power(
  z,
  alpha = 0.05,
  a = stats::qnorm(alpha/2, lower.tail = FALSE),
  two.sided = TRUE
)
```

Arguments

z A vector of z-scores

alpha Level of significance alpha

a Or, alternatively a z-score corresponding to alpha

two.sided Whether directionality of the effect size should be taken into account.

```
# mean powers corresponding to the mean components of KD2 z_{to\_power}(0:6, alpha = .05)
```

Index

```
* datasets
    OSC.z, 7
bckden, 3
control density, 13
control EM, 13, 15
control_density, 2, 4, 5, 13, 16
control_density_v1, 2, 3, 4
control_EM, 3, 4, 5, 13, 16
density, 3
EDR (zcurve.estimates), 14
ERR (zcurve.estimates), 14
expected_n (zcurve.estimates), 14
file_drawer_ration (zcurve.estimates),
        14
head.zcurve_data, 6
head.zcurve_data(), 17
included_n (zcurve.estimates), 14
is.zcurve, 6
missing_n (zcurve.estimates), 14
nleqslv, 9
nlminb, 3, 4
ODR (zcurve.estimates), 14
OSC.z, 7
plot.zcurve, 7
plot.zcurve(), 13, 16
power_to_z, 8
print.estimates.zcurve, 9
print.summary.zcurve, 10
print.zcurve, 10
print.zcurve_data, 11
print.zcurve_data(), 17
```

```
significant_n (zcurve.estimates), 14
Soric (zcurve.estimates), 14
summary.zcurve, 11
summary.zcurve(), 13, 16

z_to_power, 9, 18
zcurve, 12
zcurve(), 3-5, 8-10, 12, 15-17
zcurve.estimates, 14
zcurve.get_option (zcurve_options), 17
zcurve.options (zcurve_options), 17
zcurve_clustered, 15
zcurve_data, 16
zcurve_data(), 6, 11, 13, 15
zcurve_options, 17
```