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lookup Lookup values from a lookup table

Description

The lookup() function implements lookup of certain strings (such as variable names) from a lookup
table which maps keys onto values (such as variable labels or descriptions). Original values are
returned if they are not found in the lookup table.

The lookup table can be in the form of a two-column data.frame, in the form of a named vector,
or in the form of a list. If the table is in the form of a data.frame, the lookup columns should be
named name (for the key) and value (for the value). If the lookup table is in the form of a named
vector or list, the name is used for the key, and the returned value is taken from the values in the
vector or list.

Any names in x are not included in the result.

Usage

lookup(x, lookup_table)

Arguments

x A string vector whose elements shall be looked up

lookup_table The lookup table to use.

Value

A string vector based on x, with values replaced with the lookup values from lookup_table. Any
values not found in the lookup table are returned unchanged.

Examples

fruit_lookup_vector <- c(a="Apple", b="Banana", c="Cherry")
lookup(letters[1:5], fruit_lookup_vector)

mtcars_lookup_data_frame <- data.frame(
name = c("mpg", "hp", "wt"),
value = c("Miles/(US) gallon", "Gross horsepower", "Weight (1000 lbs)"))

lookup(names(mtcars), mtcars_lookup_data_frame)
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lookuper Construct lookup function based on a specific lookup table

Description

The lookuper() function returns a function equivalent to the lookup() function, except that in-
stead of taking a lookup table as an argument, the lookup table is embedded in the function itself.

This can be very useful, in particular when using the lookup function as an argument to other
functions that expect a function which maps character->character but do not offer a good way
to pass additional arguments to that function.

Usage

lookuper(lookup_table)

Arguments

lookup_table A the lookup table that should be used as the underlying lookup table for the
returned function.

Value

A function that takes character vectors as its argument x, and returns either the corresponding
values from the underlying lookup table, or the original values from x for those elements that are
not found in the lookup table.

Examples

lookup_fruits <- lookuper(list(a="Apple", b="Banana", c="Cherry"))
lookup_fruits(letters[1:5])

zample Sample from a vector in a safe way

Description

The zample() function duplicates the functionality of sample(), with the exception that it does
not attempt the (sometimes dangerous) user-friendliness of switching the interpretation of the first
element to a number if the length of the vector is 1. zample() always treats its first argument as a
vector containing elements that should be sampled, so your code won’t break in unexpected ways
when the input vector happens to be of length 1.

Usage

zample(x, size = length(x), replace = FALSE, prob = NULL)
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Arguments

x The vector to sample from

size The number of elements to sample from x (defaults to length(x))

replace Should elements be replaced after sampling (defaults to false)

prob A vector of probability weights (defaults to equal probabilities)

Details

If what you really want is to sample from an interval between 1 and n, you can use sample(n) or
sample.int(n) (but make sure to only pass vectors of length one to those functions).

Value

The resulting sample

Examples

# For vectors of length 2 or more, zample() and sample() are identical
set.seed(42); zample(7:11)
set.seed(42); sample(7:11)

# For vectors of length 1, zample() will still sample from the vector,
# whereas sample() will "magically" switch to interpreting the input
# as a number n, and sampling from the vector 1:n.
set.seed(42); zample(7)
set.seed(42); sample(7)

# The other arguments work in the same way as for sample()
set.seed(42); zample(7:11, size=13, replace=TRUE, prob=(5:1)^3)
set.seed(42); sample(7:11, size=13, replace=TRUE, prob=(5:1)^3)

# Of course, sampling more than the available elements without
# setting replace=TRUE will result in an error
set.seed(42); tryCatch(zample(7, size=2), error=wrap_error)

zeq Generate sequence in a safe way

Description

The zeq() function creates an increasing integer sequence, but differs from the standard one in that
it will not silently generate a decreasing sequence when the second argument is smaller than the
first. If the second argument is one smaller than the first it will generate an empty sequence, if the
difference is greater, the function will throw an error.
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Usage

zeq(from, to)

Arguments

from The lower bound of the sequence

to The higher bound of the sequence

Value

A sequence ranging from from to to

Examples

# For increasing sequences, zeq() and seq() are identical
zeq(11,15)
zeq(11,11)

# If second argument equals first-1, an empty sequence is returned
zeq(11,10)

# If second argument is less than first-1, the function throws an error
tryCatch(zeq(11,9), error=wrap_error)

zingle Return the single (unique) value found in a vector

Description

The zingle() function returns the first element in a vector, but only if all the other elements are
identical to the first one (the vector only has a zingle value). If the elements are not all identical,
it throws an error. The vector must contain at least one non-NA value, or the function errors out as
well. This is especially useful in aggregations, when all values in a given group should be identical,
but you want to make sure.

Usage

zingle(x, na.rm = FALSE)

Arguments

x Vector of elements that should all be identical

na.rm Should NA elements be removed prior to comparison
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Details

Optionally takes a na.rm parameter, similarly to sum, mean and other aggregate functions. If TRUE,
NA values will be removed prior to comparing the elements, so the function will accept input values
that contain a combination of the single value and any NA values (but at least one non-NA value is
required).

Value

The zingle element in the vector

Examples

# If all elements are identical, all is good.
# The value of the element is returned.
zingle(c("Alpha", "Alpha", "Alpha"))

# If any elements differ, an error is thrown
tryCatch(zingle(c("Alpha", "Beta", "Alpha")), error=wrap_error)

if (require("dplyr", quietly=TRUE, warn.conflicts=FALSE)) {
d <- tibble::tribble(

~id, ~name, ~fouls,
1, "James", 3,
2, "Jack", 2,
1, "James", 4

)

# If the data is of the correct format, all is good
d %>%

dplyr::group_by(id) %>%
dplyr::summarise(name=zingle(name), total_fouls=sum(fouls))

}

if (require("dplyr", quietly=TRUE, warn.conflicts=FALSE)) {
# If a name does not match its ID, we should get an error
d[1,"name"] <- "Jammes"
tryCatch({
d %>%

dplyr::group_by(id) %>%
dplyr::summarise(name=zingle(name), total_fouls=sum(fouls))

}, error=wrap_error)
}
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