CRTConjoint: Conditional Randomization Testing (CRT) Approach for Conjoint
Analysis
Computes p-value according to the CRT using the HierNet test statistic. For more details, see Ham, Imai, Janson (2022) "Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis" <arXiv:2201.08343>.
| Version: | 
0.1.0 | 
| Depends: | 
R (≥ 2.10) | 
| Imports: | 
utils, methods, doSNOW, foreach, Rcpp, snow | 
| LinkingTo: | 
Rcpp | 
| Suggests: | 
knitr, rmarkdown | 
| Published: | 
2022-06-09 | 
| Author: | 
Dae Woong Ham [aut, cre],
  Kosuke Imai [aut],
  Lucas Janson [aut],
  Jacob Bien [ctb, cph] | 
| Maintainer: | 
Dae Woong Ham  <daewoongham at g.harvard.edu> | 
| BugReports: | 
https://github.com/daewoongham97/CRTConjoint/issues | 
| License: | 
GPL (≥ 3) | 
| Copyright: | 
(c) 2022 Dae Woong Ham. Code in helper_hierNet.R, hierNet.c,
and hierNet_init.c are taken (with explicit permission) from
(c) 2020 Jacob Bien. | 
| URL: | 
https://github.com/daewoongham97/CRTConjoint | 
| NeedsCompilation: | 
yes | 
| Materials: | 
README NEWS  | 
| CRAN checks: | 
CRTConjoint results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=CRTConjoint
to link to this page.