Implements the Improved Expectation Maximisation EM* and the traditional EM algorithm for clustering big data (gaussian mixture models for both multivariate and univariate datasets). This version implements the faster alternative-EM* that expedites convergence via structure based data segregation. The implementation supports both random and K-means++ based initialization. Reference: Parichit Sharma, Hasan Kurban, Mehmet Dalkilic (2022) <doi:10.1016/j.softx.2021.100944>. Hasan Kurban, Mark Jenne, Mehmet Dalkilic (2016) <doi:10.1007/s41060-017-0062-1>.
| Version: | 2.0.5 | 
| Depends: | R (≥ 3.2.0) | 
| Imports: | mvtnorm (≥ 1.0.7), matrixcalc (≥ 1.0.3), MASS (≥ 7.3.49), Rcpp (≥ 1.0.2) | 
| LinkingTo: | Rcpp | 
| Suggests: | knitr, rmarkdown | 
| Published: | 2022-01-16 | 
| Author: | Sharma Parichit [aut, cre, ctb], Kurban Hasan [aut, ctb], Dalkilic Mehmet [aut] | 
| Maintainer: | Sharma Parichit <parishar at iu.edu> | 
| BugReports: | https://github.com/parichit/DCEM/issues | 
| License: | GPL-3 | 
| URL: | https://github.com/parichit/DCEM | 
| NeedsCompilation: | yes | 
| Citation: | DCEM citation info | 
| Materials: | README NEWS | 
| CRAN checks: | DCEM results | 
| Reference manual: | DCEM.pdf | 
| Vignettes: | 
DCEM | 
| Package source: | DCEM_2.0.5.tar.gz | 
| Windows binaries: | r-devel: DCEM_2.0.5.zip, r-release: DCEM_2.0.5.zip, r-oldrel: DCEM_2.0.5.zip | 
| macOS binaries: | r-release (arm64): DCEM_2.0.5.tgz, r-oldrel (arm64): DCEM_2.0.5.tgz, r-release (x86_64): DCEM_2.0.5.tgz, r-oldrel (x86_64): DCEM_2.0.5.tgz | 
| Old sources: | DCEM archive | 
Please use the canonical form https://CRAN.R-project.org/package=DCEM to link to this page.