GGMnonreg: Non-Regularized Gaussian Graphical Models
Estimate non-regularized Gaussian graphical models, Ising models, 
  and mixed graphical models. The current methods consist of multiple regression, 
  a non-parametric bootstrap  <doi:10.1080/00273171.2019.1575716>, and Fisher z 
  transformed partial correlations <doi:10.1111/bmsp.12173>. Parameter uncertainty, 
  predictability, and network replicability <doi:10.31234/osf.io/fb4sa> are also implemented.
| Version: | 
1.0.0 | 
| Depends: | 
R (≥ 4.0.0) | 
| Imports: | 
Rdpack, bestglm, GGally, network, sna, Matrix, poibin, parallel, doParallel, foreach, corpcor, psych, MASS, stats, methods, ggplot2, GGMncv | 
| Suggests: | 
qgraph | 
| Published: | 
2021-04-08 | 
| Author: | 
Donald Williams [aut, cre] | 
| Maintainer: | 
Donald Williams  <drwwilliams at ucdavis.edu> | 
| License: | 
GPL-2 | 
| NeedsCompilation: | 
no | 
| Citation: | 
GGMnonreg citation info  | 
| Materials: | 
README  | 
| CRAN checks: | 
GGMnonreg results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=GGMnonreg
to link to this page.