KODAMA: Knowledge Discovery by Accuracy Maximization
An unsupervised and semi-supervised learning algorithm that performs feature extraction 
  from noisy and high-dimensional data. It facilitates identification of patterns representing underlying 
  groups on all samples in a data set. Based on Cacciatore S, Tenori L, Luchinat C, Bennett PR, MacIntyre DA. 
  (2017) Bioinformatics <doi:10.1093/bioinformatics/btw705> and Cacciatore S, Luchinat C, Tenori L. (2014) 
  Proc Natl Acad Sci USA <doi:10.1073/pnas.1220873111>.
| Version: | 
2.4 | 
| Depends: | 
R (≥ 2.10.0), stats, minerva, Rtsne, umap | 
| Imports: | 
Rcpp (≥ 0.12.4) | 
| LinkingTo: | 
Rcpp, RcppArmadillo | 
| Suggests: | 
rgl, knitr, rmarkdown | 
| Published: | 
2023-01-12 | 
| Author: | 
Stefano Cacciatore
      [aut, trl,
    cre],
  Leonardo Tenori  
    [aut] | 
| Maintainer: | 
Stefano Cacciatore  <tkcaccia at gmail.com> | 
| License: | 
GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] | 
| NeedsCompilation: | 
yes | 
| CRAN checks: | 
KODAMA results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=KODAMA
to link to this page.