LSX: Semi-Supervised Algorithm for Document Scaling
A word embeddings-based semi-supervised model for document scaling Watanabe (2020) <doi:10.1080/19312458.2020.1832976>.
    LSS allows users to analyze large and complex corpora on arbitrary dimensions with seed words exploiting efficiency of word embeddings (SVD, Glove).
    It can generate word vectors on a users-provided corpus or incorporate a pre-trained word vectors.
| Version: | 
1.3.0 | 
| Depends: | 
methods, R (≥ 3.5.0) | 
| Imports: | 
quanteda (≥ 2.0), quanteda.textstats, stringi, digest, Matrix, RSpectra, irlba, rsvd, rsparse, proxyC, stats, ggplot2, ggrepel, reshape2, locfit | 
| Suggests: | 
knitr, rmarkdown, testthat | 
| Published: | 
2023-01-22 | 
| Author: | 
Kohei Watanabe [aut, cre, cph] | 
| Maintainer: | 
Kohei Watanabe  <watanabe.kohei at gmail.com> | 
| BugReports: | 
https://github.com/koheiw/LSX/issues | 
| License: | 
GPL-3 | 
| NeedsCompilation: | 
no | 
| Materials: | 
NEWS  | 
| CRAN checks: | 
LSX results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=LSX
to link to this page.