Semi-Automated Marketing Mix Modeling (MMM) aiming to reduce human bias by means of ridge regression and evolutionary algorithms, enables actionable decision making providing a budget allocation and diminishing returns curves and allows ground-truth calibration to account for causation.
| Version: | 
3.7.2 | 
| Depends: | 
R (≥ 4.0.0) | 
| Imports: | 
doParallel, doRNG, dplyr, foreach, ggplot2, ggridges, glmnet, jsonlite, lares, lubridate, minpack.lm, nloptr, patchwork, prophet, reticulate, rPref, stringr, tidyr | 
| Suggests: | 
shiny | 
| Published: | 
2022-09-01 | 
| Author: | 
Gufeng Zhou [aut],
  Leonel Sentana [aut],
  Igor Skokan [aut],
  Bernardo Lares [cre, aut],
  Meta Platforms, Inc. [cph, fnd] | 
| Maintainer: | 
Bernardo Lares  <bernardolares at fb.com> | 
| BugReports: | 
https://github.com/facebookexperimental/Robyn/issues | 
| License: | 
MIT + file LICENSE | 
| URL: | 
https://github.com/facebookexperimental/Robyn,
https://facebookexperimental.github.io/Robyn/ | 
| NeedsCompilation: | 
no | 
| Materials: | 
README  | 
| CRAN checks: | 
Robyn results |