biclustermd: Biclustering with Missing Data
Biclustering is a statistical learning technique that simultaneously 
    partitions and clusters rows and columns of a data matrix. Since the solution 
    space of biclustering is in infeasible to completely search with current 
    computational mechanisms, this package uses a greedy heuristic. The algorithm 
    featured in this package is, to the best our knowledge, the first biclustering 
    algorithm to work on data with missing values. Li, J., Reisner, J., Pham, H., 
    Olafsson, S., and Vardeman, S. (2020) Biclustering with Missing Data. Information 
    Sciences, 510, 304–316.
| Version: | 
0.2.3 | 
| Depends: | 
ggplot2 (≥ 3.0.0), R (≥ 3.5.0), tidyr (≥ 0.8.1) | 
| Imports: | 
biclust (≥ 2.0.1), doParallel (≥ 1.0.14), dplyr (≥ 0.7.6), foreach (≥ 1.4.4), magrittr (≥ 1.5), nycflights13 (≥ 1.0.0), phyclust (≥ 0.1-24) | 
| Suggests: | 
knitr, rmarkdown, testthat | 
| Published: | 
2021-06-17 | 
| Author: | 
John Reisner [cre, aut, cph],
  Hieu Pham [ctb, cph],
  Jing Li [ctb, cph] | 
| Maintainer: | 
John Reisner  <johntreisner at gmail.com> | 
| BugReports: | 
https://github.com/jreisner/biclustermd/issues | 
| License: | 
MIT + file LICENSE | 
| URL: | 
https://github.com/jreisner/biclustermd | 
| NeedsCompilation: | 
no | 
| Materials: | 
README  | 
| In views: | 
MissingData | 
| CRAN checks: | 
biclustermd results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=biclustermd
to link to this page.