bpgmm: Bayesian Model Selection Approach for Parsimonious Gaussian
Mixture Models
Model-based clustering using Bayesian parsimonious Gaussian mixture models.
  MCMC (Markov chain Monte Carlo) are used for parameter estimation. The RJMCMC (Reversible-jump Markov chain Monte Carlo) is used for model selection. 
  GREEN et al. (1995) <doi:10.1093/biomet/82.4.711>.
| Version: | 
1.0.9 | 
| Depends: | 
R (≥ 3.1.0) | 
| Imports: | 
methods (≥ 3.5.1), mcmcse (≥ 1.3-2), pgmm (≥ 1.2.3), mvtnorm (≥ 1.0-10), MASS (≥ 7.3-51.1), Rcpp (≥ 1.0.1), gtools (≥ 3.8.1), label.switching (≥ 1.8), fabMix (≥ 5.0), mclust (≥ 5.4.3) | 
| LinkingTo: | 
Rcpp, RcppArmadillo | 
| Suggests: | 
testthat | 
| Published: | 
2022-06-01 | 
| Author: | 
Xiang Lu <Xiang_Lu at urmc.rochester.edu>,
    Yaoxiang Li <yl814 at georgetown.edu>,
    Tanzy Love <tanzy_love at urmc.rochester.edu> | 
| Maintainer: | 
Yaoxiang Li  <yl814 at georgetown.edu> | 
| License: | 
GPL-3 | 
| NeedsCompilation: | 
yes | 
| SystemRequirements: | 
C++11 | 
| CRAN checks: | 
bpgmm results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=bpgmm
to link to this page.