In the context of high-throughput genetic data, CoDaCoRe identifies a set of sparse biomarkers that are predictive of a response variable of interest (Gordon-Rodriguez et al., 2021) <doi:10.1093/bioinformatics/btab645>. More generally, CoDaCoRe can be applied to any regression problem where the independent variable is Compositional (CoDa), to derive a set of scale-invariant log-ratios (ILR or SLR) that are maximally associated to a dependent variable.
| Version: | 0.0.4 | 
| Depends: | R (≥ 3.6.0) | 
| Imports: | tensorflow (≥ 2.1), keras (≥ 2.3), pROC (≥ 1.17), R6 (≥ 2.5), gtools (≥ 3.8) | 
| Suggests: | zCompositions, testthat (≥ 2.1.0), knitr, rmarkdown | 
| Published: | 2022-08-29 | 
| Author: | Elliott Gordon-Rodriguez [aut, cre], Thomas Quinn [aut] | 
| Maintainer: | Elliott Gordon-Rodriguez <eg2912 at columbia.edu> | 
| License: | MIT + file LICENSE | 
| NeedsCompilation: | no | 
| SystemRequirements: | TensorFlow (https://www.tensorflow.org/) | 
| Citation: | codacore citation info | 
| Materials: | README NEWS | 
| CRAN checks: | codacore results | 
| Reference manual: | codacore.pdf | 
| Vignettes: | 
my-vignette | 
| Package source: | codacore_0.0.4.tar.gz | 
| Windows binaries: | r-devel: codacore_0.0.4.zip, r-release: codacore_0.0.4.zip, r-oldrel: codacore_0.0.4.zip | 
| macOS binaries: | r-release (arm64): codacore_0.0.4.tgz, r-oldrel (arm64): codacore_0.0.4.tgz, r-release (x86_64): codacore_0.0.4.tgz, r-oldrel (x86_64): codacore_0.0.4.tgz | 
| Old sources: | codacore archive | 
Please use the canonical form https://CRAN.R-project.org/package=codacore to link to this page.