Computation and visualization of the empirical attainment function (EAF) for the analysis of random sets in multi-criterion optimization. M. López-Ibáñez, L. Paquete, and T. Stützle (2010) <doi:10.1007/978-3-642-02538-9_9>.
| Version: | 
2.4 | 
| Depends: | 
R (≥ 3.2) | 
| Imports: | 
modeltools, graphics, grDevices, matrixStats, Rdpack | 
| Suggests: | 
extrafont, testthat, withr, viridisLite | 
| Published: | 
2023-01-12 | 
| Author: | 
Manuel López-Ibáñez
      [aut, cre],
  Marco Chiarandini [aut],
  Carlos Fonseca [aut],
  Luís Paquete [aut],
  Thomas Stützle [aut],
  Mickaël Binois [ctb] | 
| Maintainer: | 
Manuel López-Ibáñez  <manuel.lopez-ibanez at manchester.ac.uk> | 
| BugReports: | 
https://github.com/MLopez-Ibanez/eaf/issues | 
| License: | 
GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] | 
| URL: | 
https://mlopez-ibanez.github.io/eaf/,
https://github.com/MLopez-Ibanez/eaf | 
| NeedsCompilation: | 
yes | 
| SystemRequirements: | 
GNU make, Gnu Scientific Library | 
| Citation: | 
eaf citation info  | 
| Materials: | 
README NEWS  | 
| CRAN checks: | 
eaf results |