'Keras Tuner' <https://keras-team.github.io/keras-tuner/> is a hypertuning framework made for humans. It aims at making the life of AI practitioners, hypertuner algorithm creators and model designers as simple as possible by providing them with a clean and easy to use API for hypertuning. 'Keras Tuner' makes moving from a base model to a hypertuned one quick and easy by only requiring you to change a few lines of code.
| Version: | 0.1.0.5 | 
| Imports: | reticulate, tensorflow, rstudioapi, plotly, data.table, RJSONIO, rjson, tidyjson, dplyr, echarts4r, crayon, keras, magick | 
| Suggests: | knitr, tfdatasets, testthat, purrr, rmarkdown | 
| Published: | 2022-03-25 | 
| Author: | Turgut Abdullayev [aut, cre], Google Inc. [cph] | 
| Maintainer: | Turgut Abdullayev <turqut.a.314 at gmail.com> | 
| BugReports: | https://github.com/EagerAI/kerastuneR/issues/ | 
| License: | Apache License 2.0 | 
| URL: | https://github.com/EagerAI/kerastuneR/ | 
| NeedsCompilation: | no | 
| SystemRequirements: | TensorFlow >= 2.0 (https://www.tensorflow.org/) | 
| Materials: | README | 
| CRAN checks: | kerastuneR results | 
| Reference manual: | kerastuneR.pdf | 
| Vignettes: | 
Bayesian Optimization HyperModel subclass Introduction to kerastuneR MNIST hypertuning KerasTuner best practices  | 
| Package source: | kerastuneR_0.1.0.5.tar.gz | 
| Windows binaries: | r-devel: kerastuneR_0.1.0.5.zip, r-release: kerastuneR_0.1.0.5.zip, r-oldrel: kerastuneR_0.1.0.5.zip | 
| macOS binaries: | r-release (arm64): kerastuneR_0.1.0.5.tgz, r-oldrel (arm64): kerastuneR_0.1.0.5.tgz, r-release (x86_64): kerastuneR_0.1.0.5.tgz, r-oldrel (x86_64): kerastuneR_0.1.0.5.tgz | 
| Old sources: | kerastuneR archive | 
Please use the canonical form https://CRAN.R-project.org/package=kerastuneR to link to this page.