Hyperparameter optimization package of the 'mlr3' ecosystem. It
    features highly configurable search spaces via the 'paradox' package and
    finds optimal hyperparameter configurations for any 'mlr3' learner.
    'mlr3tuning' works with several optimization algorithms e.g. Random
    Search, Iterated Racing, Bayesian Optimization (in 'mlr3mbo') and
    Hyperband (in 'mlr3hyperband'). Moreover, it can automatically optimize
    learners and estimate the performance of optimized models with nested
    resampling.
| Version: | 
0.17.2 | 
| Depends: | 
mlr3 (≥ 0.14.1), paradox (≥ 0.10.0), R (≥ 3.1.0) | 
| Imports: | 
bbotk (≥ 0.7.2), checkmate (≥ 2.0.0), data.table, lgr, mlr3misc (≥ 0.11.0), R6 | 
| Suggests: | 
adagio, GenSA, irace, mlr3learners (≥ 0.5.5), mlr3pipelines, nloptr, rpart, testthat (≥ 3.0.0), xgboost | 
| Published: | 
2022-12-22 | 
| Author: | 
Marc Becker   [cre,
    aut],
  Michel Lang   [aut],
  Jakob Richter  
    [aut],
  Bernd Bischl  
    [aut],
  Daniel Schalk  
    [aut] | 
| Maintainer: | 
Marc Becker  <marcbecker at posteo.de> | 
| BugReports: | 
https://github.com/mlr-org/mlr3tuning/issues | 
| License: | 
LGPL-3 | 
| URL: | 
https://mlr3tuning.mlr-org.com,
https://github.com/mlr-org/mlr3tuning | 
| NeedsCompilation: | 
no | 
| Materials: | 
README NEWS  | 
| CRAN checks: | 
mlr3tuning results |