Single-cell datasets are growing in size, posing challenges as well as opportunities for biology researchers. 'ondisc' (short for "on-disk single cell") enables users to easily and efficiently analyze large-scale single-cell data. 'ondisc' makes computing on large-scale single-cell data FUN: Fast, Universal, and iNtuitive.
| Version: | 1.0.0 | 
| Depends: | R (≥ 3.5.0) | 
| Imports: | readr, methods, magrittr, rhdf5, data.table, Matrix, Rcpp, crayon, dplyr | 
| LinkingTo: | Rcpp, Rhdf5lib | 
| Suggests: | testthat, knitr, rmarkdown, covr | 
| Published: | 2021-03-05 | 
| Author: | Timothy Barry  | 
| Maintainer: | Timothy Barry <tbarry2 at andrew.cmu.edu> | 
| License: | MIT + file LICENSE | 
| URL: | https://timothy-barry.github.io/ondisc/ | 
| NeedsCompilation: | yes | 
| SystemRequirements: | GNU make | 
| Materials: | README | 
| CRAN checks: | ondisc results | 
| Reference manual: | ondisc.pdf | 
| Vignettes: | 
Tutorial 1: Using the 'ondisc_matrix' class Tutorial 2: Using 'metadata_ondisc_matrix' and 'multimodal_ondisc_matrix'  | 
| Package source: | ondisc_1.0.0.tar.gz | 
| Windows binaries: | r-devel: ondisc_1.0.0.zip, r-release: ondisc_1.0.0.zip, r-oldrel: ondisc_1.0.0.zip | 
| macOS binaries: | r-release (arm64): ondisc_1.0.0.tgz, r-oldrel (arm64): ondisc_1.0.0.tgz, r-release (x86_64): ondisc_1.0.0.tgz, r-oldrel (x86_64): ondisc_1.0.0.tgz | 
Please use the canonical form https://CRAN.R-project.org/package=ondisc to link to this page.