sparseHessianFD: Numerical Estimation of Sparse Hessians
Estimates Hessian of a scalar-valued function, and returns it
    in a sparse Matrix format. The sparsity pattern must be known in advance. The
    algorithm is especially efficient for hierarchical models with a large number of
    heterogeneous units.  See Braun, M. (2017) <doi:10.18637/jss.v082.i10>.
| Version: | 
0.3.3.7 | 
| Depends: | 
R (≥ 4.0.0) | 
| Imports: | 
Matrix (≥ 1.4), methods, Rcpp (≥ 0.12.13) | 
| LinkingTo: | 
Rcpp, RcppEigen (≥ 0.3.3.3.0) | 
| Suggests: | 
testthat, numDeriv, scales, knitr, xtable, dplyr | 
| Published: | 
2022-10-19 | 
| Author: | 
Michael Braun  
    [aut, cre, cph] | 
| Maintainer: | 
Michael Braun  <braunm at smu.edu> | 
| BugReports: | 
https://github.com/braunm/sparseHessianFD/issues/ | 
| License: | 
MPL (== 2.0) | 
| URL: | 
https://braunm.github.io/sparseHessianFD/,
https://github.com/braunm/sparseHessianFD/ | 
| NeedsCompilation: | 
yes | 
| SystemRequirements: | 
C++11 | 
| Citation: | 
sparseHessianFD citation info  | 
| Materials: | 
NEWS  | 
| CRAN checks: | 
sparseHessianFD results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=sparseHessianFD
to link to this page.