Based on random forest principle, 'DynForest' is able to include multiple longitudinal predictors to provide individual predictions. Longitudinal predictors are modeled through the random forest. The methodology is fully described for a survival outcome in: Devaux, Helmer, Dufouil, Genuer & Proust-Lima (2022) <doi:10.48550/arXiv.2208.05801>.
Version: | 1.1.0 |
Depends: | R (≥ 3.5.0) |
Imports: | DescTools, cmprsk, doParallel, foreach, ggplot2, lcmm, methods, pbapply, pec, prodlim, stringr, survival, zoo |
Suggests: | knitr, rmarkdown |
Published: | 2022-11-19 |
Author: | Anthony Devaux |
Maintainer: | Anthony Devaux <anthony.devaux at u-bordeaux.fr> |
BugReports: | https://github.com/anthonydevaux/DynForest/issues |
License: | LGPL (≥ 3) |
URL: | https://github.com/anthonydevaux/DynForest |
NeedsCompilation: | no |
Citation: | DynForest citation info |
Materials: | README NEWS |
CRAN checks: | DynForest results |
Package source: | DynForest_1.1.0.tar.gz |
Windows binaries: | r-devel: DynForest_1.1.0.zip, r-release: DynForest_1.1.0.zip, r-oldrel: DynForest_1.1.0.zip |
macOS binaries: | r-release (arm64): DynForest_1.1.0.tgz, r-oldrel (arm64): DynForest_1.1.0.tgz, r-release (x86_64): DynForest_1.1.0.tgz, r-oldrel (x86_64): DynForest_1.1.0.tgz |
Old sources: | DynForest archive |
Please use the canonical form https://CRAN.R-project.org/package=DynForest to link to this page.