Nucleotide conversion sequencing experiments have been
developed to add a temporal dimension to RNA-seq and single-cell RNA-seq. Such
experiments require specialized tools for primary processing such as GRAND-SLAM,
(see 'Jürges et al' <doi:10.1093/bioinformatics/bty256>) and specialized tools for
downstream analyses. 'grandR' provides a comprehensive toolbox for quality control,
kinetic modeling, differential gene expression analysis and visualization of such data.
Version: |
0.2.0 |
Imports: |
stats, Matrix, ggplot2, grDevices, patchwork, plyr, parallel, reshape2, MASS, cowplot, minpack.lm, lfc, methods, utils, numDeriv |
Suggests: |
knitr, rmarkdown, circlize, Seurat, ComplexHeatmap, ggrepel, RCurl, DESeq2, clusterProfiler, msigdbr, fgsea, rclipboard, cubature, lamW, DT, RColorBrewer, eulerr, gsl, htmltools, labeling, matrixStats, monocle, VGAM, quantreg, rlang, graphics, scales, shiny |
Published: |
2022-09-20 |
Author: |
Florian Erhard
[aut, cre],
Teresa Rummel [ctb],
Lygeri Sakellaridi [ctb] |
Maintainer: |
Florian Erhard <Florian.Erhard at uni-wuerzburg.de> |
BugReports: |
https://github.com/erhard-lab/grandR/issues |
License: |
Apache License (≥ 2) |
URL: |
https://github.com/erhard-lab/grandR |
NeedsCompilation: |
no |
Citation: |
grandR citation info |
Materials: |
README NEWS |
CRAN checks: |
grandR results |