Implements methods to fit Virtual Twins models (Foster et al. (2011) <doi:10.1002/sim.4322>) for identifying subgroups with differential effects in the context of clinical trials while controlling the probability of falsely detecting a differential effect when the conditional average treatment effect is uniform across the study population using parameter selection methods proposed in Wolf et al. (2022) <doi:10.1177/17407745221095855>.
Version: | 0.1.1 |
Depends: | R (≥ 3.5.0) |
Imports: | party, glmnet, Rdpack, rpart, stringr, SuperLearner, randomForestSRC, earth |
Suggests: | spelling, testthat (≥ 3.0.0) |
Published: | 2022-11-07 |
Author: | Jack Wolf |
Maintainer: | Jack Wolf <jackwolf910 at gmail.com> |
BugReports: | https://github.com/jackmwolf/tehtuner/issues |
License: | GPL (≥ 3) |
URL: | https://github.com/jackmwolf/tehtuner |
NeedsCompilation: | no |
Language: | en-US |
Materials: | README NEWS |
CRAN checks: | tehtuner results |
Reference manual: | tehtuner.pdf |
Package source: | tehtuner_0.1.1.tar.gz |
Windows binaries: | r-devel: tehtuner_0.1.1.zip, r-release: tehtuner_0.1.1.zip, r-oldrel: tehtuner_0.1.1.zip |
macOS binaries: | r-release (arm64): tehtuner_0.1.1.tgz, r-oldrel (arm64): tehtuner_0.1.1.tgz, r-release (x86_64): tehtuner_0.1.1.tgz, r-oldrel (x86_64): tehtuner_0.1.1.tgz |
Please use the canonical form https://CRAN.R-project.org/package=tehtuner to link to this page.